Article

Improving pore interconnectivity in polymeric scaffolds for tissue engineering.

Chemical Engineering Department and Bioengineering Division and Centre for Bioengineering, Hacettepe University and Biyomedtek, Beytepe 06800, Ankara, Turkey.
Journal of Tissue Engineering and Regenerative Medicine (Impact Factor: 2.83). 07/2009; 3(6):470-6. DOI: 10.1002/term.187
Source: PubMed

ABSTRACT A new scaffold fabrication technique aiming to enhance pore interconnectivity for tissue engineering has been developed. Medical grade poly(lactic acid) was utilized to generate scaffolds by a solvent-evaporating/particulate-leaching technique, using a new dual-porogen system. Water-soluble sodium chloride particles were used to control macro-pore size in the range 106-255 microm, while organic naphthalene was utilized as a porogen to increase pore interconnections. The three-dimensional (3D) morphology of the scaffolds manufactured with and without naphthalene was examined by optical coherence tomography and scanning electron microscopy. The mechanical properties of the scaffolds were characterized by compression tests. MG63 osteoblast cells were seeded in the scaffolds to study the cell attachment and viability evaluated by confocal microscopy. It was revealed that introducing naphthalene as the second porogen in the solvent-evaporating/particulate-leaching process resulted in improvement of the pore interconnectivity. Cells grew in both scaffolds fabricated with and without naphthalene. They exhibited strong green fluorescence when using a live/dead fluorescent dye kit, indicating that the naphthalene in the scaffold process did not affect cell viability.

1 Bookmark
 · 
109 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Large-area or critical-sized bone defects pose a serious challenge in orthopedic surgery, as all current treatment options present with shortcomings. Bone tissue engineering offers a more promising alternative treatment strategy. However, this approach requires mechanically stable scaffolds that support homogenous bone formation throughout the scaffold thickness. Despite advances in scaffold fabrication, current scaffold-based techniques are unable to support uniform, three-dimensional bone regeneration, and are limited to only the scaffold surface in vitro and in vivo. This is mainly because of inadequate scaffold pore sizes (<200 μm) and accessible pore volume, and the associated limited oxygen diffusion and vascular invasion. In this study, we have adopted a method combining microsphere-sintering and porogen-leaching techniques to fabricate scaffolds with an increased accessible pore volume. Of the scaffolds developed, moderately porous poly(85 lactide-co-15 glycolide) (PLGA) microsphere scaffolds were selected as most advantageous, since they retain mechanical strength in the range of human cancellous bone and display a significantly higher accessible pore volume, which is attributed to an increased percentage of larger pores (i.e., size range 200-600 μm). Unlike control scaffolds with a limited pore size and an accessible pore volume, moderately porous scaffolds displayed increased oxygen diffusion, pre-osteoblast cell infiltration, proliferation, and survival throughout the entire scaffold. Furthermore, moderately porous PLGA microsphere scaffolds displayed enhanced and homogenous mineralization in vitro. Since these newly designed moderately porous scaffolds are weight bearing, are fully osteoconductive, and have the ability to support vascularization, they may serve as effective scaffolds for large-area bone defect repair/regeneration. In addition, this study demonstrates the ability to modulate scaffold porosity and, in turn, to develop oxygen tension-controlled matrices that are effective for large-area bone regeneration.
    Tissue Engineering Part A 03/2012; 18(13-14):1376-88. · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to study the gross morphological changes occurring during tissue formation is vital to producing tissue-engineered structures of clinically relevant dimensions in vitro. Here, we have used nondestructive methods of digital imaging and optical coherence tomography to monitor the early-stage formation and subsequent maturation of fibrin-based tissue-engineered ligament constructs. In addition, the effect of supplementation with essential promoters of collagen synthesis, ascorbic acid (AA) and proline (P), has been assessed. Contraction of the cell-seeded fibrin gel occurs unevenly within the first 5 days of culture around two fixed anchor points before forming a longitudinal ligament-like construct. AA+P supplementation accelerates gel contraction in the maturation phase of development, producing ligament-like constructs with a higher collagen content and distinct morphology to that of unsupplemented constructs. These studies highlight the importance of being able to control the methods of tissue formation and maturation in vitro to enable the production of tissue-engineered constructs with suitable replacement tissue characteristics for repair of clinical soft-tissue injuries.
    Tissue Engineering Part A 03/2012; 18(15-16):1596-607. · 4.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, poly(glycerol-co-sebacate-co-ε-caprolactone) (PGSCL) elastomers were synthesized for the first time from the respective monomers. The structural analysis of PGSCL elastomers by nuclear magnetic resonance ((1) H-NMR) and Fourier transform infrared spectroscopy (FTIR) revealed that the elastomers have a high number of hydrogen bonds and crosslinks. X-ray diffraction (XRD) and thermal analysis indicated an amorphous state. Differential scanning calorimetry (DSC) analysis showed that the elastomers has a glass transition temperature (Tg ) of -36.96°C. The Young's modulus and compression strength values were calculated as 46.08 MPa and 3.192 MPa, respectively. Calculations based on acid number and end groups analysis revealed a number average molecular weight of 148.15 kDa. Even though the foaming studies conducted by using supercritical CO2 resulted in a porous structure; the obtained morphology tended to disappear after 48 h, leaving small cracks on the surface. This phenomenon was interpreted as an indication of self-healing due to the high number of hydrogen bonds. The PGSCL elastomers synthesized in this study are flexible, robust to compression forces and have self-healing capacity. Thanks to good biocompatibility and poor cell-adhesion properties, the elastomers may find diverse applications where a postoperative adhesion barrier is required. Copyright © 2013 John Wiley & Sons, Ltd.
    Journal of Tissue Engineering and Regenerative Medicine 05/2013; · 2.83 Impact Factor