Association of common copy number variants at the glutathione S-transferase genes and rare novel genomic changes with schizophrenia

Unitat de Genètica, Universitat Pompeu Fabra, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
Molecular Psychiatry (Impact Factor: 15.15). 07/2009; 15(10):1023-33. DOI: 10.1038/mp.2009.53
Source: PubMed

ABSTRACT Copy number variants (CNVs) are a substantial source of human genetic diversity, influencing the variable susceptibility to multifactorial disorders. Schizophrenia is a complex illness thought to be caused by a number of genetic and environmental effects, few of which have been clearly defined. Recent reports have found several low prevalent CNVs associated with the disease. We have used a multiplex ligation-dependent probe amplification-based (MLPA) method to target 140 previously reported and putatively relevant gene-containing CNV regions in 654 schizophrenic patients and 604 controls for association studies. Most genotyped CNVs (95%) showed very low (<1%) population frequency. A few novel rare variants were only present in patients suggesting a possible pathogenic involvement, including 1.39 Mb overlapping duplications at 22q11.23 found in two unrelated patients, and duplications of the somatostatin receptor 5 gene (SSTR5) at 16p13.3 in three unrelated patients. Furthermore, among the few relatively common CNVs observed in patients and controls, the combined analysis of gene copy number genotypes at two glutathione S-transferase (GST) genes, GSTM1 (glutathione S-transferase mu 1) (1p13.3) and GSTT2 (glutathione S-transferase theta 2) (22q11.23), showed a statistically significant association of non-null genotypes at both loci with an additive effect for increased vulnerability to schizophrenia (odds ratio of 1.92; P=0.0008). Our data provide complementary evidences for low prevalent, but highly penetrant chromosomal variants associated with schizophrenia, as well as for common CNVs that may act as susceptibility factors by disturbing glutathione metabolism.

Download full-text


Available from: Roser Guillamat, Jun 24, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a common mental illness resulting from a complex interplay of genetic and environmental risk factors. Establishing its primary molecular and cellular aetiopathologies has proved difficult. However, this is a vital step towards the rational development of useful disease biomarkers and new therapeutic strategies. The advent and large-scale application of genomic, transcriptomic, proteomic and metabolomic technologies are generating data sets required to achieve this goal. This discovery phase, typified by its objective and hypothesis-free approach, is described in the first part of the review. The accumulating biological information, when viewed as a whole, reveals a number of biological process and subcellular locations that contribute to schizophrenia causation. The data also show that each technique targets different aspects of central nervous system function in the disease state. In the second part of the review, key schizophrenia candidate genes are discussed more fully. Two higher-order processes - adult neurogenesis and inflammation - that appear to have pathological relevance are also described in detail. Finally, three areas where progress would have a large impact on schizophrenia biology are discussed: deducing the causes of schizophrenia in the individual, explaining the phenomenon of cross-disorder risk factors, and distinguishing causative disease factors from those that are reactive or compensatory.
    Expert Reviews in Molecular Medicine 10/2011; 13:e25. DOI:10.1017/S1462399411001955 · 5.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Copy number variants (CNVs) extend our understanding of the genetic diversity in humans. However, the distribution and characteristics of CNVs in Asian populations remain largely unexplored, especially for rare CNVs that have emerged as important genetic factors for complex traits. In the present study, we performed an in-depth investigation of common and rare CNVs across 8,148 individuals from the three major Asian ethnic groups: Chinese (n = 1,945), Malays (n = 2,399), and Indians (n = 2,217) in Singapore, making this investigation the most comprehensive genome-wide survey of CNVs outside the European-ancestry populations to date. We detected about 16 CNVs per individual and the ratio of loss to gain events is ∼2:1. The majority of the CNVs are of low frequency (<10%), and 40% are rare (<1%). In each population, ∼20% of the CNVs are not previously catalogued in the Database of Genomic Variants (DGV). Contrary to findings from European studies, the common CNVs (>5%) in our populations are not well tagged by SNPs in Illumina 1M and 610K arrays, and most disease-associated common CNVs previously reported in Caucasians are rare in our populations. We also report noticeable population differentiation in the CNV landscape of these Asian populations, with the greatest diversity seen between the Indians and the Chinese.
    Human Mutation 12/2011; 32(12):1341-9. DOI:10.1002/humu.21601 · 5.05 Impact Factor
  • Brain Behavior and Immunity 08/2011; 25. DOI:10.1016/j.bbi.2011.07.123 · 6.13 Impact Factor