Purification and characterization of a wound-inducible thaumatin-like protein from the latex of Carica papaya.

Laboratoire de Chimie Générale (CP: 206/4), Institut de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium.
Phytochemistry (Impact Factor: 3.35). 07/2009; 70(8):970-8. DOI: 10.1016/j.phytochem.2009.05.005
Source: PubMed

ABSTRACT A 22.137 kDa protein constituent of fresh latex was isolated both from the latex of regularly damaged papaya trees and from a commercially available papain preparation. The protein was purified up to apparent homogeneity and was shown to be absent in the latex of papaya trees that had never been previously mechanically injured. This suggests that the protein belongs to pathogenesis-related protein family, as expected for several other protein constituents of papaya latex. The protein was identified as a thaumatin-like protein (class 5 of the pathogenesis-related proteins) on the basis of its partial amino acid sequence. By sequence analysis of the Carica genome, three different forms of thaumatin-like protein were identified, where the latex constituent belongs to a well-known form, allowing the molecular modeling of its spatial structure. The papaya latex thaumatin-like protein was further characterized. The protein appears to be stable in the pH interval from 2 to 10 and resistant to chemical denaturation by guanidium chloride, with a DeltaG(water)(0) of 15.2 kcal/mol and to proteolysis by the four papaya cysteine proteinases. The physiological role of this protein is discussed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins from latex of Calotropis procera (CpLP), Plumeria rubra (PrLP), Carica candamarcensis (P1G10) and Euphorbia tirucalli (EtLP) were tested for antifungal activity against phytopathogens. CpLP and P1G10 inhibited each fungi analyzed. PrLP and EtLP did not exert inhibition. CpLP and P1G10 exhibited preferential inhibitory activity towards R. solani (IC₅₀ = 20.7 and 25.3 µg/ml, respectively). The inhibitory activity was lost after heat treatment or proteolysis, providing evidence for the involvement of proteins in the inhibitory effect. Treatment of CpLP or P1G10 with Dithiothreitol improved both, the endogenous proteolytic activity and the antifungal properties. Conversely, pre-treatment of CpLP or P1G10 with iodoacetamide drastically reduced endogenous proteolytic activities and partially abrogated antifungal activity. Similar results were observed when spores were challenged to germinate in the presence of laticifer proteins. The purified cysteine proteinase CMS2MS2 from Carica candamarcensis latex or papain (E.C., a cysteine proteinase from latex of Carica papaya L., but not trypsin (EC or chymotrypsin (EC, two serine proteases, replicated the results obtained with CpLP or P1G10, thus restricting the antifungal property to latex plant cysteine proteinases. CpLP, CMS2MS2 and papain induced production of reactive oxygen species in spores of F. solani, suggesting that inhibition could be linked to oxidative stress. Proteome analysis of CpLP by 2-D electrophoresis and MALDI-TOF-TOF confirmed the existence of various pathogenic-related proteins such as chitinases, peroxidases and osmotins. The results support that laticifer proteins are part of plant defense repertoire against phytopathogenic fungi.
    Planta 03/2011; 234(1):183-93. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peanut (Arachis hypogaea L) is one of the widely cultivated and leading oilseed crops of the world and its yields are greatly affected by various biotic and abiotic stresses. Arachis diogoi, a wild relative of peanut, is an important source of genes for resistance against various stresses that affect peanut. In our previous study a thaumatin-like protein gene was found to be upregulated in a differential expression reverse transcription PCR (DDRT-PCR) study using the conidial spray of the late leaf spot pathogen, Phaeoisariopsis personata. In the present study, the corresponding full length cDNA was cloned using RACE-PCR and has been designated as AdTLP. It carried an open reading frame of 726 bp potentially capable of encoding a polypeptide of 241 amino acids with 16 conserved cysteine residues. The semi-quantitative RT-PCR analysis showed that the transcript level of AdTLP increased upon treatment with the late leaf spot pathogen of peanut, P. personata and various hormone treatments indicating its involvement in both, biotic and abiotic stresses. The antifungal activity of the purified recombinant protein was checked against different fungal pathogens, which showed enhanced anti-fungal activity compared to many other reported TLP proteins. The recombinant AdTLP-GFP fusion protein was found to be predominantly localized to extracellular spaces. Transgenic tobacco plants ectopically expressing AdTLP showed enhanced resistance to fungal pathogen, Rhizoctonia solani. The seedling assays showed enhanced tolerance of AdTLP transgenic plants against salt and oxidative stress. The transcript analysis of various defense related genes highlighted constitutively higher level expression of PR1a, PI-I and PI-II genes in transgenic plants. These results suggest that the AdTLP is a good candidate gene for enhancing stress resistance in crop plants.
    PLoS ONE 01/2013; 8(12):e83963. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new solid acid catalyst is developed by the direct sulphonation of the ethene bond of a pure trans ethene bridged Periodic Mesoporous Organosilica. The catalytic activity of this mesoporous material is evaluated in an esterification reaction and compared with ptoluenesulphonic acid. The sulphonated ethene PMO can compete with a homogeneous catalyst and maintains its porosity.
    01/2010: pages 365-368; Elsevier Science Bv.


Available from
May 17, 2014