In vitro effects of Sutherlandia frutescens water extracts on cell numbers, morphology, cell cycle progression and cell death in a tumorigenic and a non-tumorigenic epithelial breast cell line. J Ethnopharmacol

Department of Physiology, PO Box 2034, University of Pretoria, Pretoria 0001, South Africa.
Journal of ethnopharmacology (Impact Factor: 3). 08/2009; 124(1):45-60. DOI: 10.1016/j.jep.2009.04.013
Source: PubMed


Sutherlandia frutescens is a South African herb traditionally used for internal cancers, diabetes, a variety of inflammatory conditions and recently to improve the overall health in cancer and HIV/AIDS patients. The in vitro effects of S. frutescens extracts were evaluated on cell numbers, morphology, cell cycle progression and cell death. Dose-dependent studies (2-10 mg/ml) revealed a decrease in malignant cell numbers when compared to their controls. S. frutescens extracts (10 mg/ml) decreased cell growth in a statistically significantly manner to 26% and 49% (P<0.001) in human breast adenocarcinoma (MCF-7) and human non-tumorigenic epithelial mammary gland cells (MCF-12A) respectively after 72 h of exposure. Cell density was significantly compromised and hypercondensed chromatin, cytoplasmic shrinking, membrane blebbing and apoptotic bodies were more pronounced in the MCF-7 cell line. Both S. frutescens-treated cell lines exhibited and increased tendency for acridine orange staining, suggesting increased lysosomal and/or autophagy activity. Flow cytometry showed an increase in the sub G(1) apoptotic fraction and an S phase arrest in both the 5 mg/ml and 10 mg/ml S. frutescens-treated cells. S. frutescens induced an increase in apoptosis in both cell lines as detected by Annexin V and propidium iodide flow cytometric measurement. At 10 mg/ml, late stages of apoptosis were more prominent in MCF-7 S. frutescens-treated cells when compared to the MCF-12A cells. Transmission electron microscopy revealed hallmarks of increased vacuolarization and hypercondensed chromatin, suggesting autophagic and apoptotic processes. The preliminary study demonstrates that S. frutescens water extracts exert a differential action mechanism in non-tumorigenic MCF-12A cells when compared to tumorigenic MCF-7 cells, warranting future studies on this multi-purpose medicinal plant in southern Africa.

1 Follower
54 Reads
  • Source
    • "Fernandes reported that a hot-water extract of S. frutescens had antioxidant and anti-inflammatory activities both in human neutrophils and in a cell-free system, and these findings were confirmed by other groups (Chen, 2007; Fernandes et al., 2004; Tobwala et al., 2014). A hot-water extract induces apoptosis and autophagic processes in neoplastic cells (e.g., cervical carcinoma and human breast adenocarcinoma MCF-7 cells (Chinkwo, 2005; Stander et al., 2009), which may explain S. frutescens' claimed activity toward certain cancers. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sutherlandia frutescens (L.) R. Br. is an indigenous plant of southern Africa that has been traditionally used for various cancers, infections, and inflammatory conditions. Our aim was to investigate the potential immuno-stimulatory activity of a polysaccharide-enriched fraction (SFPS) from a decoction of S. frutescens. RAW 264.7 cells (a murine macrophage cell line) were used to determine the activities of SFPS on macrophage function. The production of reactive oxygen species (ROS), nitric oxide (NO), and inflammatory cytokines were evaluated in the cells treated with or without SFPS. CLI-095, a toll-like receptor (TLR) 4-specific inhibitor, was used to identify whether or not SFPS exerts its effects through TLR4. An antagonist of endotoxin, polymyxin B, was used to evaluate whether endotoxin present in SFPS contributed to its immune-stimulatory activity. SFPS exhibited potent immune-stimulatory activity by macrophages. The production of ROS, NO, and tumor necrosis factor (TNF-α) were increased upon exposure to SFPS in a dose-dependent manner. All of these activities were completely blocked by co-treatment with CLI-095, but only partially diminished by polymyxin B. We demonstrate for the first time potent immune-stimulatory activity in a decoction prepared from S. frutescens. We believe that this immune stimulatory activity is due, in part, to the action of polysaccharides present in the decoction that acts by way of TLR4 receptors and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. These findings provide a plausible mechanism through which we can understand some of the medicinal properties of S. frutescens. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
    Journal of ethnopharmacology 06/2015; 172. DOI:10.1016/j.jep.2015.06.013 · 3.00 Impact Factor
  • Source
    • "These cells secreted low levels of cytokines generally consistent with the decrease cell viability of treated PBMCs. A number of studies have shown the cytotoxicity of SF extracts on cultured cell lines in vitro (Tai et al., 2004; Chinkwo, 2005; Stander et al., 2009; Korb et al., 2010). L-canavanine, a natural L-arginine analogue, and its metabolite canaline were suggested as two of many factors contributing to in vitro antiproliferative and apoptotic activity of SF extracts (Chinkwo, 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sutherlandia frutescens (SF) is one of the medicinal plants used as an immune booster in the treatment of chronic ailments such as HIV/AIDS and cancer. Limited data suggest that its efficacy is based on its regulatory effect on cytokines, the critical components of the immune response. In this study, we investigated the in vitro immunomodulatory effects of SF extracts on normal human peripheral blood mononuclear cells (PBMCs). An ELISA-based assay was used to assess the levels of expression of 12 cytokines in treated cells. An adenosine triphosphate (ATP) assay was used to assess cell viability in relation to cytokine secretion. SF ethanol extracts induced changes in cytokine secretion relative to the dose of the extract. Generally cytokine expression and secretion was low in concentration because were not stimulated with any endotoxin. The high SFE dose (2.5 mg/ml) significantly (p<0.001) decreased some cytokines including TNF-α and IL 1β. Low doses of this extract (0.5 mg/ml) did not change TNF-α and IL 1β secretion from the baseline (untreated cells). Changes in cytokine secretion of SFE treated cells tracked changes in ATP levels (cell viability). The SFW extract-induced changes in cytokine secretion were independent of cell viability. TNF-α was decreased (p<0.001) by the high dose of SFW extract while IL 1β and IFNγ were increased (p<0.01) by the same dose. High doses decreased cell viability which was reflected in cytokine secretion. It is evident, from these results, that SF extracts can modulate cytokine secretion in unstimulated normal PBMCs in vitro. Further studies in animal models are recommended to advance understanding of this immunomodulatory activity.
    African Journal of Traditional, Complementary and Alternative Medicines 09/2012; 9(3 Suppl):40-6. DOI:10.4314/ajtcam.v9i3S.6 · 0.56 Impact Factor
  • Source
    • "The Hoechst 33342 penetrates intact cell membranes of viable cells and those undergoing apoptosis and therefore stains the nucleus. Propidium iodide can only stain the nucleus of cells that have lost their membrane integrity and therefore stain the nucleus of cells undergoing late apoptosis and necrosis [9]. In both cell lines the extracts showed morphological changes including apoptotic bodies, hypercondensed chromatin, reduced cytoplasm, and cellular debris which were indicative of possible apoptosis taking place [17, 18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Acetone extracts of selected plant species were evaluated for their in vitro cytotoxicity against a noncancerous African green monkey kidney (Vero) cell line and an adenocarcinoma cervical cancer (HeLa) cell line. The plants studied were Origanum vulgare L. (Oregano), Rosmarinus officinalis L. (Upright and ground cove rosemary), Lavandula spica L. (Lavender), Laurus nobilis L. (Bay leaf), Thymus vulgaris L. (Thyme), Lavandula x intermedia L. (Margaret Roberts Lavender), Petroselinum crispum Mill. (Curly leaved parsley), Foeniculum vulgare Mill. (Fennel), and Capsicum annuum L. (Paprika). Antioxidant activity was determined using a quantitative DPPH (1,1-diphenyl-2-picryl hydrazyl) assay. The rosemary species exhibited effective radical scavenging capacity with 50% inhibitory concentration (IC(50)) of 3.48 ± 0.218 μg/mL and 10.84 ± 0.125 μg/mL and vitamin C equivalents of 0.351 g and 1.09 g for McConnell's Blue and Tuscan Blue, respectively. Cytotoxicity was measured using XTT (Sodium 3'-[1-(phenyl amino-carbonyl)-3,4-tetrazolium]-bis-[4-methoxy-6-nitro] benzene sulfonic acid hydrate) colorimetric assay. Only L. nobilis and O. vulgare exhibited pronounced effects on the HeLa cell line. Dose-dependent studies revealed IC(50) of 34.46 ± 0.48 μg/mL and 126.3 ± 1.00 μg/mL on the HeLa cells and on the Vero cells 124.1 μg/mL ± 18.26 and 163.8 μg/mL ± 2.95 for L. nobilis and O. vulgare, respectively. Light (eosin and haematoxylin staining) and confocal microscopy (Hoechst 33342, acridine orange, and propidium iodide staining) were used to evaluate the cytotoxic mechanism of action for L. nobilis and O. vulgare.
    Evidence-based Complementary and Alternative Medicine 05/2012; 2012:564927. DOI:10.1155/2012/564927 · 1.88 Impact Factor
Show more