In vitro effects of Sutherlandia frutescens water extracts on cell numbers, morphology, cell cycle progression and cell death in a tumorigenic and a non-tumorigenic epithelial breast cell line.

Department of Physiology, PO Box 2034, University of Pretoria, Pretoria 0001, South Africa.
Journal of ethnopharmacology (Impact Factor: 2.94). 08/2009; 124(1):45-60. DOI: 10.1016/j.jep.2009.04.013
Source: PubMed

ABSTRACT Sutherlandia frutescens is a South African herb traditionally used for internal cancers, diabetes, a variety of inflammatory conditions and recently to improve the overall health in cancer and HIV/AIDS patients. The in vitro effects of S. frutescens extracts were evaluated on cell numbers, morphology, cell cycle progression and cell death. Dose-dependent studies (2-10 mg/ml) revealed a decrease in malignant cell numbers when compared to their controls. S. frutescens extracts (10 mg/ml) decreased cell growth in a statistically significantly manner to 26% and 49% (P<0.001) in human breast adenocarcinoma (MCF-7) and human non-tumorigenic epithelial mammary gland cells (MCF-12A) respectively after 72 h of exposure. Cell density was significantly compromised and hypercondensed chromatin, cytoplasmic shrinking, membrane blebbing and apoptotic bodies were more pronounced in the MCF-7 cell line. Both S. frutescens-treated cell lines exhibited and increased tendency for acridine orange staining, suggesting increased lysosomal and/or autophagy activity. Flow cytometry showed an increase in the sub G(1) apoptotic fraction and an S phase arrest in both the 5 mg/ml and 10 mg/ml S. frutescens-treated cells. S. frutescens induced an increase in apoptosis in both cell lines as detected by Annexin V and propidium iodide flow cytometric measurement. At 10 mg/ml, late stages of apoptosis were more prominent in MCF-7 S. frutescens-treated cells when compared to the MCF-12A cells. Transmission electron microscopy revealed hallmarks of increased vacuolarization and hypercondensed chromatin, suggesting autophagic and apoptotic processes. The preliminary study demonstrates that S. frutescens water extracts exert a differential action mechanism in non-tumorigenic MCF-12A cells when compared to tumorigenic MCF-7 cells, warranting future studies on this multi-purpose medicinal plant in southern Africa.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sutherlandia frutescens (SF) is one of the medicinal plants used as an immune booster in the treatment of chronic ailments such as HIV/AIDS and cancer. Limited data suggest that its efficacy is based on its regulatory effect on cytokines, the critical components of the immune response. In this study, we investigated the in vitro immunomodulatory effects of SF extracts on normal human peripheral blood mononuclear cells (PBMCs). An ELISA-based assay was used to assess the levels of expression of 12 cytokines in treated cells. An adenosine triphosphate (ATP) assay was used to assess cell viability in relation to cytokine secretion. SF ethanol extracts induced changes in cytokine secretion relative to the dose of the extract. Generally cytokine expression and secretion was low in concentration because were not stimulated with any endotoxin. The high SFE dose (2.5 mg/ml) significantly (p<0.001) decreased some cytokines including TNF-α and IL 1β. Low doses of this extract (0.5 mg/ml) did not change TNF-α and IL 1β secretion from the baseline (untreated cells). Changes in cytokine secretion of SFE treated cells tracked changes in ATP levels (cell viability). The SFW extract-induced changes in cytokine secretion were independent of cell viability. TNF-α was decreased (p<0.001) by the high dose of SFW extract while IL 1β and IFNγ were increased (p<0.01) by the same dose. High doses decreased cell viability which was reflected in cytokine secretion. It is evident, from these results, that SF extracts can modulate cytokine secretion in unstimulated normal PBMCs in vitro. Further studies in animal models are recommended to advance understanding of this immunomodulatory activity.
    African Journal of Traditional, Complementary and Alternative Medicines 09/2012; 9(3 Suppl):40-6. DOI:10.4314/ajtcam.v9i3S.6 · 0.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sutherlandia frutescens (SF), a popular traditional medicinal plant found in various parts of southern Africa, is used for treatment or management of HIV/AIDS and other diseases including cancer. However, its toxicity profile has not been fully established. The aims of this study were to examine the effects of 70% ethanol (SFE) and deionised water (SFW) extracts on normal isolated human T cells. An experimental study on normal human lymphocytes treated with doses SF extract doses ranging from 0.25 to 2.5 mg/ml. Untreated, vehicle-treated (Ethanol) and camptothecin (CPT) treated normal T cells were used as controls. Induction of cell death, changes in intracellular ATP, caspase-3/-7 activity and nuclear changes were analysed using flow cytometry, luminometry and nuclear staining (Hoechst) respectively. The highest concentration (2.5 mg/ml) of SFE extract induced significant necrosis (95%), depletion of ATP (76%), and inhibition of caspase-3/-7 activity (11%) following a 24 hour incubation period (p< 0.001). The 2.5 mg/ml concentration of SFW showed the same trend but were less effective (necrosis- 26%, ATP- 91%, & caspase-3/-7- 15%). These effects showed a time-dependence over 48 hours of incubation, with high doses of SFE extracts eliminating viable cells by necrosis, depleting ATP levels and decreasing caspase-3/-7 activity (p< 0.001). The activity of SFE extract was independent of ethanol. The SFW extract dilutions were less toxic than the SFE extracts. Significant DNA fragmentation as demonstrated by Hoechst staining was also seen over 48-hour incubation for high doses of both types of SF extracts. These results showed that although high concentrations of SF extracts can be toxic to normal T cells in vitro, SFW fractions were relatively safe for use.
    African Journal of Traditional, Complementary and Alternative Medicines 01/2012; 9(1):73-80. DOI:10.4314/ajtcam.v9i1.11 · 0.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A simple protocol for direct shoot organogenesis and plant regeneration in Lessertia frutescens using hypocotyl and cotyledon segments is reported. l-canavanine content in the derived shoots is also quantified. Media containing different concentrations and combinations of the cytokinins kinetin (K) and benzyladenine (BA) were tested for shoot induction potential. The best shoot regeneration rate (83%) was obtained from hypocotyl segments cultured in Murashige and Skoog (MS) medium supplemented with 1mgl−1 K; these hypocotyls also produced the largest number of shoots per explant (3.5) and the longest shoots per explant (13.3 mm). The best shoot regeneration rate (46%) using cotyledons as explant material was obtained in MS medium supplemented with 1mgl−1 K and 1mgl−1 BA or with 5mgl−1 K and 0.5mgl−1 BA. The highest number of cotyledon-derived shoots (1.5) was obtained in MS medium containing 2mgl−1 K and 0.5 mgl−1 BA, and the longest cotyledon-derived shoots (6.1 mm) were obtained in MS medium containing 1mgl−1 K and 0.5mgl−1 BA. Shoots derived from hypocotyls cultured on media containing 1mgl−1 K contained the highest quantity of l-canavanine (1.42mgg−1) relative to the control (0.52mgg−1). Shoots derived from cotyledons cultured on media containing 2mgl−1K contained the highest quantity of l-canavanine (2.07mgg−1) compared to the control. Scanning electron microscopy revealed that shoots regenerated directly from the wounded epidermal tissue, although callus formation was observed in most cultures. Young shoot clusters proliferated into healthy adventitious shoots that were subsequently transferred directly onto rooting medium (MS medium containing 4mgl−1 indole-3-butyric acid), eliminating the need for an additional multiplication or elongation phase. The in vitro plants were successfully acclimatized in a growth chamber, achieving an 85% survival rate. KeywordsCytokinin–Phytocompound– l-canavanine–Scanning electron microscopy–Shoot regeneration
    Plant Cell Tissue and Organ Culture 06/2010; 105(3):439-446. DOI:10.1007/s11240-010-9885-3 · 2.61 Impact Factor