Comparison of 1 H blood oxygen level-dependent (BOLD) and 19 F MRI to investigate tumor oxygenation

Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9058, USA.
Magnetic Resonance in Medicine (Impact Factor: 3.4). 08/2009; 62(2):357-64. DOI: 10.1002/mrm.22020
Source: PubMed

ABSTRACT Fluorine-19 [(19)F] MRI oximetry and (1)H blood oxygen level-dependent (BOLD) MRI were used to investigate tumor oxygenation in rat breast 13762NF carcinomas, and correlations between the techniques were examined. A range of tissue oxygen partial pressure (pO(2)) values was found in the nine tumors while the anesthetized rats breathed air, with individual tumor pO(2) ranging from a mean of 1 to 36 torr and hypoxic fraction (HF10) (<10 torr) ranging from 0% to 75%, indicating a large intra- and intertumor heterogeneity. Breathing oxygen produced significant increase in tumor pO(2) (mean DeltapO(2) = 50 torr) and decrease in HF(10) (P < 0.01). (1)H BOLD MRI observed using a spin echo-planar imaging (EPI) sequence revealed a heterogeneous response and significant increase in mean tumor signal intensity (SI) (DeltaSI = 7%, P < 0.01). R(2)* measured by multigradient-echo (MGRE) MRI decreased significantly in response to oxygen (mean DeltaR(2)* = -4 s(-1); P < 0.05). A significant correlation was found between changes in mean tumor pO(2) and mean EPI BOLD DeltaSI accompanying oxygen breathing (r(2) > 0.7, P < 0.001). Our results suggest that BOLD MRI provides information about tumor oxygenation and may be useful to predict pO(2) changes accompanying interventions. Significantly, the magnitude of the BOLD response appears to be predictive for residual tumor HFs.

  • Imaging in medicine 10/2009; 1(1):11-13. DOI:10.2217/iim.09.2
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor angiogenesis and the ability of cancer cells to induce neovasculature continue to be a fascinating area of research. As the delivery network that provides substrates and nutrients, as well as chemotherapeutic agents to cancer cells, but allows cancer cells to disseminate, the tumor vasculature is richly primed with targets and mechanisms that can be exploited for cancer cure or control. The spatial and temporal heterogeneity of tumor vasculature, and the heterogeneity of response to targeting, make noninvasive imaging essential for understanding the mechanisms of tumor angiogenesis, tracking vascular targeting, and detecting the efficacy of antiangiogenic therapies. With its noninvasive characteristics, exquisite spatial resolution and range of applications, magnetic resonance imaging (MRI) techniques have provided a wealth of functional and molecular information on tumor vasculature in applications spanning from "bench to bedside". The integration of molecular biology and chemistry to design novel imaging probes ensures the continued evolution of the molecular capabilities of MRI. In this review, we have focused on developments in the characterization of tumor vasculature with functional and molecular MRI.
    Advances in genetics 01/2010; 69:1-30. DOI:10.1016/S0065-2660(10)69010-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia has long been recognized to influence solid tumor response to therapy. Increasingly, hypoxia has also been implicated in tumor aggressiveness, including growth, development and metastatic potential. Thus, there is a fundamental, as well as a clinical interest, in assessing in situ tumor hypoxia. This review will examine diverse approaches focusing on the preclinical setting, particularly, in rodents. The strategies are inevitably a compromise in terms of sensitivity, precision, temporal and spatial resolution, as well as cost, feasibility, ease and robustness of implementation. We will review capabilities of multiple modalities and examine what makes them particularly suitable for investigating specific aspects of tumor pathophysiology. Current approaches range from nuclear imaging to magnetic resonance and optical, with varying degrees of invasiveness and ability to examine spatial heterogeneity, as well as dynamic response to interventions. Ideally, measurements would be non-invasive, exploiting endogenous reporters to reveal quantitatively local oxygen tension dynamics. A primary focus of this review is magnetic resonance imaging (MRI) based techniques, such as ¹⁹F MRI oximetry, which reveals not only hypoxia in vivo, but more significantly, spatial distribution of pO₂ quantitatively, with a precision relevant to radiobiology. It should be noted that preclinical methods may have very different criteria for acceptance, as compared with potential investigations for prognostic radiology or predictive biomarkers suitable for use in patients.
    The quarterly journal of nuclear medicine and molecular imaging: official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of.. 06/2010; 54(3):259-80.


Available from