Performance evaluation of Calypso 4D localization and kilovoltage image guidance systems for interfraction motion management of prostate patients.

Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.
The Scientific World Journal (Impact Factor: 1.73). 02/2009; 9:449-58. DOI: 10.1100/tsw.2009.61
Source: PubMed

ABSTRACT Prostate cancer represents a model site for advances in understanding inter- and intrafraction motion for radiotherapy. In this study, we examined the correlation of the electromagnetic transponder system/Calypso 4D Localization System with conventional on-board imaging (OBI) using kilovoltage imaging. Initially using a quality assurance (QA) phantom and subsequently using data of seven patients, the vector distances between Calypso- and OBI-recorded shifts were compared using the t-test. For the 30 phantom measurements, the average differences between the measured Calypso offset and the calculated OBI shift were 0.4 +/- 0.4, 0.2 +/- 0.3, and 0.4 +/- 0.3 mm in the lateral, longitudinal, and vertical directions, respectively (p = 0.73, p = 0.91, and p = 0.99, respectively), and the average difference vector for all sessions was 0.8 +/- 0.4 mm. For the 259 patient measurements, the average differences between the measured Calypso offset and the calculated OBI shift were 0.7 +/- 0.5, 1.1 +/- 0.9, and 1.2 +/- 0.9 mm in the lateral, longitudinal, and vertical directions, respectively (p = 0.45, p = 0.28, and p = 0.56, respectively), and the average difference vector for all sessions was 2.1 +/- 1.0 mm. Our results demonstrated good correlation between Calypso and OBI. While other studies have explored the issue of Calypso/OBI correlation, our analysis is unique in our use of phantom validation and in our performing the patient analysis on an initial population prior to routine setup using Calypso without OBI. Implications for Calypso's role as a QA tool are discussed.


Available from: Peter J Rossi, Jun 07, 2015
  • Journal of Radiotherapy in Practice 12/2014; 13(04):473-483. DOI:10.1017/S1460396914000223
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intensity modulated radiation therapy (IMRT) has allowed accurate delivery of prostate radiotherapy; Volumetric modulated arc therapy (VMAT) offers an advancement of this technique with possible dosimetric advantages and delivery in a shorter time than standard IMRT. We hypothesize that treatment duration is a controllable factor associated with intrafraction target motion. Included patients were treated for localized prostate cancer using IMRT or VMAT (RapidArc, Varian Medical Systems, Palo Alto, CA). Continuous motion data were monitored simultaneously using electromagnetic transponders (Calypso 4D Localization System, Calypso Medical Technologies, Inc, Seattle, WA). Displacements were recorded in the RL (right-left), SI (superior-inferior), and AP (anterior-posterior) directions at 10/second (Hz). Daily motion was reported as the mean (R̄̄) and 95th percentile (R95) displacement value for the entire session. Time effect was assessed by measuring daily displacement variables (R̄̄, R95) after each successive minute of treatment. Thirty-seven patients were included, accounting for 1332 treatment sessions. Mean session time was 7.4 minutes (range, 0.5-37.2; interquartile range, 4.8-9.2). R̄̄ (0.06, 0.08, 0.11, 0.18) and R95 (0.14, 0.18, 0.23, 0.36) values (RL, SI, AP, 3-dimensional [3D], respectively) were evaluated for the entire cohort. Regression analysis showed treatment time to be the strongest predictor of observed displacements (P < .001 AP, SI, 3D; P < 0.05 RL). Ninety-five displacements increased continuously from 0.05 cm, 0.09 cm, 0.12 cm, and 0.16 cm after 1 minute to 0.21 cm, 0.20 cm, 0.29 cm, and 0.47 after 10 minutes (RL, SI, AP, and 3D). Mean session time for VMAT was 4.6 minutes compared to 8.4 minutes for IMRT (difference = 3.8 min, P < .0001); VMAT was associated with reduced motion for both (difference = 0.02, 0.03, 0.05, 0.07 cm) and (0.03, 0.04, 0.11, 0.12 cm) displacements. Our study is unique in exploring the role of session duration on intrafraction motion in the setting of electromagnetic transponders as well as VMAT. Our main results demonstrate that observed intrafraction prostate motion during radiotherapy is greater with increasing session time. Additionally, VMAT, due to shorter treatment sessions, resulted in significant reduction (30%-40%) in intrafraction displacements.
    10/2011; 1(4):243-50. DOI:10.1016/j.prro.2011.02.008
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Implanted radiofrequency transponders were used for real-time monitoring of the intrafraction prostate displacement between patients in the prone position and the same patients in the supine position. Thirteen patients had three transponders implanted transperineally and were treated prone with a custom-fitted thermoplastic immobilization device. After collecting data from the last fraction, patients were realigned in the supine position and the displacements of the transponders were monitored for 5-7 minutes. Fourier transforms were applied to the data from each patient to determine periodicity and its amplitude. To remove auto correlation from the stream of displacement data, the distribution of short-term and long-term velocity components were calculated from Poincaré plots of paired sequential vector displacements. The mean absolute displacement was significantly greater prone than supine in the superior-inferior (SI) plane (1.2 ± 0.6 mm vs. 0.6 ± 0.4 mm, p= 0.015), but not for the lateral or anterior-posterior (AP) planes. Displacements were least in the lateral direction. Fourier analyses showed the amplitude of respiratory oscillations was much greater for the SI and AP planes in the prone versus the supine position. Analysis of Poincaré plots confirmed greater short-term variance in the prone position, but no difference in the long-term variance. The centroid of the implanted transponders was offset from the treatment isocenter by > 5 mm for 1.9% of the time versus 0.8% of the time for supine. These results confirmed significantly greater net intrafraction prostate displacement of patients in the prone position than in the supine position, but most of the difference was due to respiration-induced motion that was most pronounced in the SI and AP directions. Because the respiratory motion remained within the action threshold and also within our 5 mm treatment planning margins, there is no compelling reason to choose one treatment position over the other.
    Journal of Applied Clinical Medical Physics 01/2013; 14(2):4141. · 1.11 Impact Factor