Neurofeedback fMRI-mediated learning and consolidation of regional brain activation during motor imagery. Int J Imaging Syst Technol

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
International Journal of Imaging Systems and Technology (Impact Factor: 1.3). 01/2008; 18(1):69-78. DOI: 10.1002/ima.20139
Source: PubMed

ABSTRACT We report the long-term effect of real-time functional MRI (rtfMRI) training on voluntary regulation of the level of activation from a hand motor area. During the performance of a motor imagery task of a right hand, blood-oxygenation-level-dependent (BOLD) signal originating from a primary motor area was presented back to the subject in real-time. Demographically matched individuals also received the same procedure without valid feedback information. Followed by the initial rtfMRI sessions, both groups underwent two-week long, daily-practice of the task. Off-line data analysis revealed that the individuals in the experimental group were able to increase the level of BOLD signal from the regulatory target to a greater degree compared to the control group. Furthermore, the learned level of activation was maintained after the two-week period, with the recruitment of additional neural circuitries such as the hippocampus and the limbo-thalamo-cortical pathway. The activation obtained from the control group, in the absence of proper feedback, was indifferent across the training conditions. The level of BOLD activity from the target regulatory region was positively correlated with a self evaluative score within the experimental group, while the majority of control subjects had difficulty adopting a strategy to attain the desired level of functional regulation. Our results suggest that rtfMRI helped individuals learn how to increase region-specific cortical activity associated with a motor imagery task, and the level of increased activation in motor areas was consolidated after the two-week self-practice period, with the involvement of neural circuitries implicated in motor skill learning.

Download full-text


Available from: Ferenc A Jolesz, Sep 26, 2015
28 Reads
  • Source
    • "updated from our previously developed in-house codes (Lee, Kim, & Yoo, 2012; Lee et al., 2008, 2009; Yoo et al., 2007, 2008). The rtfMRI-NF software was installed on a laptop computer (Intel Core i5 2.4 GHz, 8-GB RAM, 256-GB SSD as hard drive, Windows 7). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Real-time fMRI (rtfMRI) neurofeedback (NF) facilitates volitional control over brain activity and the modulation of associated mental functions. The NF signals of traditional rtfMRI-NF studies predominantly reflect neuronal activity within ROIs. In this study, we describe a novel rtfMRI-NF approach that includes a functional connectivity (FC) component in the NF signal (FC-added rtfMRI-NF). We estimated the efficacy of the FC-added rtfMRI-NF method by applying it to nicotine-dependent heavy smokers in an effort to reduce cigarette craving. ACC and medial pFC as well as the posterior cingulate cortex and precuneus are associated with cigarette craving and were chosen as ROIs. Fourteen heavy smokers were randomly assigned to receive one of two types of NF: traditional activity-based rtfMRI-NF or FC-added rtfMRI-NF. Participants received rtfMRI-NF training during two separate visits after overnight smoking cessation, and cigarette craving score was assessed. The FC-added rtfMRI-NF resulted in greater neuronal activity and increased FC between the targeted ROIs than the traditional activity-based rtfMRI-NF and resulted in lower craving score. In the FC-added rtfMRI-NF condition, the average of neuronal activity and FC was tightly associated with craving score (Bonferroni-corrected p = .028). However, in the activity-based rtfMRI-NF condition, no association was detected (uncorrected p > .081). Non-rtfMRI data analysis also showed enhanced neuronal activity and FC with FC-added NF than with activity-based NF. These results demonstrate that FC-added rtfMRI-NF facilitates greater volitional control over brain activity and connectivity and greater modulation of mental function than activity-based rtfMRI-NF.
    Journal of Cognitive Neuroscience 03/2015; 27(8):1-21. DOI:10.1162/jocn_a_00802 · 4.09 Impact Factor
  • Source
    • "Moreover, the activation of this region after MI training was as robust as that recorded during actual practice. In a more recent study, Yoo et al. (2008) showed that real time fMRI might help individuals to learn how to increase region-specific cortical activity associated with a MI task. "
    Advanced Brain Neuroimaging Topics in Health and Disease - Methods and Applications, Edited by T. Dorina Papageorgiou, George I. Christopoulos, Stelios M. Smirnakis, 05/2014: chapter 16; In Tech., ISBN: 978-953-51-1203-7
  • Source
    • "Moreover, the activation of this region after imagery training was as robust as that recorded during actual practice. Yoo et al. (2008) later showed that real time fMRI might help individuals to learn how to increase region-specific cortical activity associated with a motor imagery task. Practically, the level of increased activation in motor areas was consolidated after the 2-week self-practice period. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Skill learning is the improvement in perceptual, cognitive, or motor performance following practice. Expert performance levels can be achieved with well-organized knowledge, using sophisticated and specific mental representations and cognitive processing, applying automatic sequences quickly and efficiently, being able to deal with large amounts of information, and many other challenging task demands and situations that otherwise paralyze the performance of novices. The neural reorganizations that occur with expertise reflect the optimization of the neurocognitive resources to deal with the complex computational load needed to achieve peak performance. As such, capitalizing on neuronal plasticity, brain modifications take place over time-practice and during the consolidation process. One major challenge is to investigate the neural substrates and cognitive mechanisms engaged in expertise, and to define "expertise" from its neural and cognitive underpinnings. Recent insights showed that many brain structures are recruited during task performance, but only activity in regions related to domain-specific knowledge distinguishes experts from novices. The present review focuses on three expertise domains placed across a motor to mental gradient of skill learning: sequential motor skill, mental simulation of the movement (motor imagery), and meditation as a paradigmatic example of "pure" mental training. We first describe results on each specific domain from the initial skill acquisition to expert performance, including recent results on the corresponding underlying neural mechanisms. We then discuss differences and similarities between these domains with the aim to identify the highlights of the neurocognitive processes underpinning expertise, and conclude with suggestions for future research.
    Frontiers in Human Neuroscience 05/2014; 8:280. DOI:10.3389/fnhum.2014.00280 · 2.99 Impact Factor
Show more