Article

Expansion of an FMR1 grey-zone allele to a full mutation in two generations.

Laboratorio de Genética Humana, Unidad de Diagnóstico Genético y Perinatal, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain.
The Journal of molecular diagnostics: JMD (Impact Factor: 3.96). 08/2009; 11(4):306-10. DOI: 10.2353/jmoldx.2009.080174
Source: PubMed

ABSTRACT Fragile X Syndrome is caused by the expansion of an unstable CGG-repeat tract in the 5'-UTR of the FMR1 gene, which generally results in transcriptional silencing and consequent absence of the FMR1 protein. To date, the smallest premutation allele reported to expand to a full mutation allele in a single generation is 59 CGG repeats. Here, we report a single-generation expansion to a full mutation allele (male with approximately 538 CCG repeats) from a mother who is a carrier of a premutation allele of 56 CGG repeats. Furthermore, the maternal grandfather was a carrier of a gray (or intermediate)-zone allele (45 to 54 repeats) of 52 CGG repeats. Thus, in this family, a gray-zone allele expanded to the full mutation range in two generations. Interestingly, the two AGG interruptions present in the grandfather's allele were absent in the mother's premutation allele. These observations underscore the need to consider carriers of alleles of greater than 55 CGG repeats as being at risk for transmission of a full mutation allele in a single generation, and those with even smaller alleles in the gray zone as being at risk of having grandchildren with full mutation alleles.

0 Followers
 · 
201 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The CGG trinucleotide repeat within the FMR1 gene is associated with multiple clinical disorders, including fragile X-associated tremor/ataxia syndrome, fragile X-associated primary ovarian insufficiency, and fragile X syndrome. Differences in the distribution and prevalence of CGG repeat length and of AGG interruption patterns have been reported among different populations and ethnicities. In this study we characterized the AGG interruption patterns within 3,065 normal CGG repeat alleles from nine world populations including Australia, Chile, United Arab Emirates, Guatemala, Indonesia, Italy, Mexico, Spain, and United States. Additionally, we compared these populations with those previously reported, and summarized the similarities and differences. We observed significant differences in AGG interruption patterns. Frequencies of longer alleles, longer uninterrupted CGG repeat segments and alleles with greater than 2 AGG interruptions varied between cohorts. The prevalence of fragile X syndrome and FMR1 associated disorders in various populations is thought to be affected by the total length of the CGG repeat and may also be influenced by the AGG distribution pattern. Thus, the results of this study may be important in considering the risk of fragile X-related conditions in various populations.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X Syndrome (FXS) is a genetic disease due to a CGG trinucleotide expansion, named full mutation (greater than 200 CGG repeats), in the fragile X mental retardation 1 gene locus Xq27.3; which leads to an hypermethylated region in the gene promoter therefore silencing it and lowering the expression levels of the fragile X mental retardation 1, a protein involved in synaptic plasticity and maturation. Individuals with FXS present with intellectual disability, autism, hyperactivity, long face, large or prominent ears and macroorchidism at puberty and thereafter. Most of the young children with FXS will present with language delay, sensory hyper arousal and anxiety. Girls are less affected than boys, only 25% have intellectual disability. Given the genomic features of the syndrome, there are patients with a number of triplet repeats between 55 and 200, known as premutation carriers. Most carriers have a normal IQ but some have developmental problems. The diagnosis of FXS has evolved from karyotype with special culture medium, to molecular techniques that are more sensitive and specific including PCR and Southern Blot. During the last decade, the advances in the knowledge of FXS, has led to the development of investigations on pharmaceutical management or targeted treatments for FXS. Minocycline and sertraline have shown efficacy in children.
    Colombia Medica 10/2014; 45(4):190-198. · 0.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Triple-primed PCR assays have become the preferred fragile X syndrome testing method. Using a commercially available assay, we detected a reproducible extra peak(s) in 0.5% of 13,161 clinical samples. The objectives of this study were to determine the cause of these extra peaks; to identify whether these peaks represent an assay specific artifact, an underlying chromosome aneuploidy, or somatic mosaicism; and to ascertain their clinical relevance. The presence of an extra allele(s) was confirmed by a laboratory-developed PCR, with sequencing of the FMR1 5' UTR or Southern blot for some samples. The laboratory-developed procedure detected the extra allele(s) in 57 of 64 samples. Thus, we confirmed an extra peak, typically of lower abundance, in approximately 0.4% of all samples. Of these samples, 5 were from males and 52 were from heterozygous or homozygous females. Six patients likely had X chromosome aneuploidies. In 82.3% of samples, the extra allele had fewer repeats than the predominant allele(s). Additional alleles detected by FMR1 triple-primed PCR are not an assay-specific artifact and are likely due to X chromosome aneuploidies or somatic repeat instability. Additional normal alleles likely have no clinical significance for fragile X syndrome carrier or affected status. Extra alleles in individuals with normal karyotypes probably represent FMR1 somatic variation.
    The Journal of molecular diagnostics: JMD 11/2014; 16(6):689-96. DOI:10.1016/j.jmoldx.2014.06.006 · 3.96 Impact Factor

Full-text (2 Sources)

Download
60 Downloads
Available from
May 29, 2014