Expansion of an FMR1 grey-zone allele to a full mutation in two generations.

Laboratorio de Genética Humana, Unidad de Diagnóstico Genético y Perinatal, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain.
The Journal of molecular diagnostics: JMD (Impact Factor: 3.48). 08/2009; 11(4):306-10.
Source: PubMed

ABSTRACT Fragile X Syndrome is caused by the expansion of an unstable CGG-repeat tract in the 5'-UTR of the FMR1 gene, which generally results in transcriptional silencing and consequent absence of the FMR1 protein. To date, the smallest premutation allele reported to expand to a full mutation allele in a single generation is 59 CGG repeats. Here, we report a single-generation expansion to a full mutation allele (male with approximately 538 CCG repeats) from a mother who is a carrier of a premutation allele of 56 CGG repeats. Furthermore, the maternal grandfather was a carrier of a gray (or intermediate)-zone allele (45 to 54 repeats) of 52 CGG repeats. Thus, in this family, a gray-zone allele expanded to the full mutation range in two generations. Interestingly, the two AGG interruptions present in the grandfather's allele were absent in the mother's premutation allele. These observations underscore the need to consider carriers of alleles of greater than 55 CGG repeats as being at risk for transmission of a full mutation allele in a single generation, and those with even smaller alleles in the gray zone as being at risk of having grandchildren with full mutation alleles.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Triple-primed PCR assays have become the preferred fragile X syndrome testing method. Using a commercially available assay, we detected a reproducible extra peak(s) in 0.5% of 13,161 clinical samples. The objectives of this study were to determine the cause of these extra peaks; to identify whether these peaks represent an assay specific artifact, an underlying chromosome aneuploidy, or somatic mosaicism; and to ascertain their clinical relevance. The presence of an extra allele(s) was confirmed by a laboratory-developed PCR, with sequencing of the FMR1 5' UTR or Southern blot for some samples. The laboratory-developed procedure detected the extra allele(s) in 57 of 64 samples. Thus, we confirmed an extra peak, typically of lower abundance, in approximately 0.4% of all samples. Of these samples, 5 were from males and 52 were from heterozygous or homozygous females. Six patients likely had X chromosome aneuploidies. In 82.3% of samples, the extra allele had fewer repeats than the predominant allele(s). Additional alleles detected by FMR1 triple-primed PCR are not an assay-specific artifact and are likely due to X chromosome aneuploidies or somatic repeat instability. Additional normal alleles likely have no clinical significance for fragile X syndrome carrier or affected status. Extra alleles in individuals with normal karyotypes probably represent FMR1 somatic variation.
    The Journal of molecular diagnostics: JMD 11/2014; 16(6):689-96. · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The strongest association between FMR1 and the ovary in humans is the increased risk of premature ovarian failure (POF) in women who carry the premutation level of CGG repeats (55-199 CGGs). Research on the FMR1 gene has extended to other endpoints of relevance in the OB/GYN setting for women, including infertility and ovarian hormones. After reviewing the nomenclature changes that have occurred in recent years, this article reviews the evidence linking the length of the FMR1 repeat length to fertility and ovarian hormones (follicle stimulating hormone and anti-mullerian hormone as the primary methods to assess ovarian reserve in clinical settings). The literature is inconsistent on the association between the FMR1 trinucleotide repeat length and infertility. Elevated levels of follicle stimulating hormone have been found in women who carry the premutation; however the literature on the relationship between anti-mullerian hormone and the CGG repeat length are too disparate in design to make a summary statement. This article considers the implications of two transgenic mouse models (FXPM 130R and YAC90R) for theories on pathogenesis related to ovarian endpoints. Given the current screening/testing recommendations for reproductive age females and the variability of screening protocols in clinics, future research is recommended on pretest and posttest genetic counseling needs. Future research is also needed on ovarian health measurements across a range of CGG repeat lengths in order to interpret FMR1 test results in reproductive age women; the inconsistencies in the literature make it quite challenging to advise women on their risks related to FMR1 repeat length.
    Frontiers in Genetics 07/2014; 5:195.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X syndrome is the most common inherited form of intellectual disability. Here we report on a study based on a collaborative registry, involving 12 Spanish centres, of molecular diagnostic tests in 1105 fragile X families comprising 5062 individuals, of whom, 1655 carried a full mutation or were mosaic, three cases had deletions, 1840 had a premutation, and 102 had intermediate alleles. Two patients with the full mutation also had Klinefelter syndrome. We have used this registry to assess the risk of expansion from parents to children. From mothers with premutation, the overall rate of allele expansion to full mutation is 52.5%, and we found that this rate is higher for male than female offspring (63.6% versus 45.6%; P < 0.001). Furthermore, in mothers with intermediate alleles (45-54 repeats), there were 10 cases of expansion to a premutation allele, and for the smallest premutation alleles (55-59 repeats), there was a 6.4% risk of expansion to a full mutation, with 56 repeats being the smallest allele that expanded to a full mutation allele in a single meiosis. Hence, in our series the risk for alleles of <59 repeats is somewhat higher than in other published series. These findings are important for genetic counselling.

Full-text (2 Sources)

Available from
May 29, 2014