Article

Integrated Pathway-Based Approach Identifies Association between Genomic Regions at CTCF and CACNB2 and Schizophrenia

PLoS Genetics (Impact Factor: 8.17). 06/2014; DOI: 10.1371/journal.pgen.1004345

ABSTRACT In the present study, an integrated hierarchical approach was applied to: (1) identify pathways associated with susceptibility to schizophrenia; (2) detect genes that may be potentially affected in these pathways since they contain an associated polymorphism; and (3) annotate the functional consequences of such single-nucleotide polymorphisms (SNPs) in the affected genes or their regulatory regions. The Global Test was applied to detect schizophrenia-associated pathways using discovery and replication datasets comprising 5,040 and 5,082 individuals of European ancestry, respectively. Information concerning functional gene-sets was retrieved from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and the Molecular Signatures Database. Fourteen of the gene-sets or pathways identified in the discovery dataset were confirmed in the replication dataset. These include functional processes involved in transcriptional regulation and gene expression, synapse organization, cell adhesion, and apoptosis. For two genes, i.e. CTCF and CACNB2, evidence for association with schizophrenia was available (at the gene-level) in both the discovery study and published data from the Psychiatric Genomics Consortium schizophrenia study. Furthermore, these genes mapped to four of the 14 presently identified pathways. Several of the SNPs assigned to CTCF and CACNB2 have potential functional consequences, and a gene in close proximity to CACNB2, i.e. ARL5B, was identified as a potential gene of interest. Application of the present hierarchical approach thus allowed: (1) identification of novel biological gene-sets or pathways with potential involvement in the etiology of schizophrenia, as well as replication of these findings in an independent cohort; (2) detection of genes of interest for future follow-up studies; and (3) the highlighting of novel genes in previously reported candidate regions for schizophrenia.

1 Bookmark
 · 
113 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic factors play as large a role as environmental factors in the etiology of alcohol dependence. Although genome-wide association studies (GWAS) enable systematic searches for loci not hitherto implicated in the etiology of alcohol dependence, many true findings may be missed due to correction for multiple testing. The aim of the present study was to circumvent this limitation by searching for biological system-level differences, and then following up these findings in humans and animals. Gene-set based analysis of GWAS data from 1333 cases and 2168 controls identified 19 significantly associated gene-sets of which five could be replicated in an independent sample. Clustered in these gene-sets were novel and previously identified susceptibility genes. The most frequently present gene, ie in 6 out of 19 gene-sets, was X-ray repair complementing defective repair in Chinese hamster cells 5 (XRCC5). Previous human and animal studies have implicated XRCC5 in alcohol sensitivity. This phenotype is inversely correlated with the development of alcohol dependence, presumably since more alcohol is required to achieve the desired effects. In the present study, the functional role of XRCC5 in alcohol dependence was further validated in animals and humans. Drosophila mutants with reduced function of Ku80-the homolog of mammalian XRCC5-due to RNAi silencing showed reduced sensitivity to ethanol. In humans with free access to intravenous ethanol self-administration in the laboratory, the maximum achieved blood alcohol concentration was influenced in an allele-dose dependent manner by genetic variation in XRCC5. In conclusion, our convergent approach identified new candidates and generated independent evidence for the involvement of XRCC5 in alcohol dependence.Neuropsychopharmacology accepted article preview online, 18 July 2014; doi:10.1038/npp.2014.178.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 07/2014; 40(2). DOI:10.1038/npp.2014.178 · 8.68 Impact Factor

Full-text (3 Sources)

Download
59 Downloads
Available from
Jun 6, 2014
Available from