Article

Standardizing the nomenclature for clonal lineages of the sudden oak death pathogen, Phytophthora ramorum.

Phytopathology (Impact Factor: 2.97). 08/2009; 99(7):792-5. DOI: 10.1094/PHYTO-99-7-0792
Source: PubMed

ABSTRACT Phytophthora ramorum, the causal agent of sudden oak death and ramorum blight, is known to exist as three distinct clonal lineages which can only be distinguished by performing molecular marker-based analyses. However, in the recent literature there exists no consensus on naming of these lineages. Here we propose a system for naming clonal lineages of P. ramorum based on a consensus established by the P. ramorum research community. Clonal lineages are named with a two letter identifier for the continent on which they were first found (e.g., NA = North America; EU = Europe) followed by a number indicating order of appearance. Clonal lineages known to date are designated NA1 (mating type: A2; distribution: North America; environment: forest and nurseries), NA2 (A2; North America; nurseries), and EU1 (predominantly A1, rarely A2; Europe and North America; nurseries and gardens). It is expected that novel lineages or new variants within the existing three clonal lineages could in time emerge.

0 Bookmarks
 · 
380 Views
  • Source
    01/2012: pages In press;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phytophthora ramorum, an invasive plant pathogen of unknown origin, causes considerable and widespread damage in plant industries and natural ecosystems of the USA and Europe. Estimating the potential geographical range of P. ramorum has been complicated by a lack of biological and geographical data with which to calibrate climatic models. Previous attempts to do so, using either invaded range data or surrogate species approaches, have delivered varying results. A simulation model was developed using CLIMEX to estimate the global climate suitability patterns for establishment of P. ramorum. Growth requirements and stress response parameters were derived from ecophysiological laboratory observations and site-level transmission and disease factors related to climate data in the field. Geographical distribution data from the USA (California and Oregon) and Norway were reserved from model-fitting and used to validate the models. The model suggests that the invasion of P. ramorum in both North America and Europe is still in its infancy and that it is presently occupying a small fraction of its potential range. Phytophthora ramorum appears to be climatically suited to large areas of Africa, Australasia and South America, where it could cause biodiversity and economic losses in plant industries and natural ecosystems with susceptible hosts if introduced.
    PLoS ONE 01/2013; 8(5):e63508. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Invasive oomycete pathogens have been causing significant damage to native ecosystems worldwide for over a century. A recent well‐known example is Phytophthora ramorum, the causal agent of sudden oak death, which emerged in the 1990s in Europe and North America. In Europe, this pathogen is mainly restricted to woody ornamentals in nurseries and public greens, while severe outbreaks in the wild have only been reported in the UK. This study presents the results of the P. ramorum survey conducted in Swiss nurseries between 2003 and 2011. In all 120 nurseries subjected to the plant passport system, the main P. ramorum hosts were visually checked for above ground infections. Phytophthora species were isolated from tissue showing symptoms and identified on the basis of the morphological features of the cultures and sequencing of the ribosomal ITS region. Phytophthora was detected on 125 plants (66 Viburnum, 58 Rhododendron and one Pieris). Phytophthora ramorum was the most frequent species (59·2% of the plants), followed by P. plurivora, P. cactorum, P. citrophthora, P. cinnamomi, P. cactorum/P. hedraiandra, P. multivora and P. taxon PgChlamydo. The highest incidence of P. ramorum was observed on Viburnum × bodnantense. Microsatellite genotyping showed that the Swiss P. ramorum population is highly clonal and consists of seven genotypes (five previously reported in Europe, two new), all belonging to the European EU1 clonal lineage. It can therefore be assumed that P. ramorum entered Switzerland through nursery trade. Despite sanitation measures, repeated P. ramorum infections have been recorded in seven nurseries, suggesting either reintroduction or unsuccessful eradication efforts.
    Plant Pathology 01/2013; · 2.97 Impact Factor

Full-text (2 Sources)

View
47 Downloads
Available from
Jun 3, 2014