Article

Helicobacter pylori induces gastric mucosal intestinal metaplasia through the inhibition of interleukin-4-mediated HMG box protein Sox2 expression.

Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
AJP Gastrointestinal and Liver Physiology (Impact Factor: 3.65). 07/2009; 297(2):G312-22. DOI: 10.1152/ajpgi.00518.2007
Source: PubMed

ABSTRACT Helicobacter pylori is a major cause of the transdifferentiation into intestinal metaplasia that may develop gastric cancer. However, the molecular pathogenesis of this transdifferentiation is poorly understood. A SRY-related HMG box protein Sox2 is an essential transcription factor of organ development in brain, lung, and stomach. Our aim of this study was to investigate the mechanism responsible for regulation of Sox2 in host Th1-dominant response to H. pylori. Sox2 protein was immunohistochemically expressed in both human oxyntic and pyloric glands with H. pylori infection, but not in intestinal metaplasia. Western immunoblotting of gastric epithelial cell lines showed that IL-4, a Th2-related cytokine, dose dependently enhanced Sox2 expression among H. pylori infection-mediated cytokines. Small changes of Sox2 expression were observed after each treatment with IFN-gamma, IL-1beta, or TNF-alpha. IL-4-mediated Sox2 induction was suppressed by the inhibition of STAT6 activation with STAT6 RNA interference, and electrophoretic mobility shift assay indicated that activation of the Sox2 promoter by IL-4 occurred through the action of STAT6. Furthermore, H. pylori and IFN-gamma inhibited the phosphorylation of STAT6, resulting in the suppression of IL-4-mediated Sox2 expression. Immunohistochemical analyses showed significantly the suppressed STAT6 activity in H. pylori-infected human gastric mucosa. Additionally, downregulation of Sox2 by knockdown experiments led to intestinal phenotype with expressions of Cdx2 and MUC2. These results suggest that H. pylori and IFN-gamma interfere with the differentiation into oxyntic and pyloric glands by the downregulation of Sox2 on IL-4/STAT6 signaling, which may contribute to the transdifferentiation into intestinal metaplasia.

0 Bookmarks
 · 
78 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lymphocytic gastritis (LG) is a chronic inflammatory process of poorly understood pathogenesis. We report the case of a 12-year-old premenstrual girl with refractory iron deficiency anemia in which the oral iron absorption challenge suggested iron malabsorption. Laboratory studies ruled out celiac disease and autoimmune gastritis, and carbon-13 urea breath test for Helicobacter pylori was also negative. Upper endoscopy with gastric body and antral mucosa biopsies revealed a LG with focal intestinal metaplasia and H. pylori infection. H. pylori eradication was undertaken with success and 3 months later her hematologic parameters normalized. Histologic reevaluation showed disappearance of LG. This case shows that investigation of malabsorption disease in the presence of refractory iron deficiency anemia can lead to the diagnosis of important gastric diseases, even in the absence of gastrointestinal symptoms. This nonceliac child was diagnosed with a severe histopathologic pattern of LG, with potential risk of malignant transformation, which was completely reverted with adequate H. pylori eradication treatment.
    Journal of Pediatric Hematology/Oncology 03/2013; · 0.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Sry-containing protein Sox2 initially was known to regulate the self-renewal of the mouse and human embryonic stem cells (ESCs). It is also important for the maintenance of stem cells in multiple adult tissues including the brain and trachea, and it is one of the key transcription factors for establishing induced pluripotent stem cells. Recently, overexpression and gene amplification of Sox2 have been associated with the development of squamous cell carcinoma in multiple tissues such as the lung and esophagus. These different roles for Sox2 involve a complicated regulatory networks consisting of microRNAs, kinases and signaling molecules. While the levels of Sox2 are modulated transcriptionally and translationally, post-translational modification is also important for the various functions of Sox2. In clinics, high levels of Sox2 are correlated with poor prognosis and increased proliferation of cancer stem cells. Therefore targeting Sox2 can be potentially explored for a new therapeutic avenue to treat cancers. This review will focus on the different roles for Sox2 in stem cell maintenance and its oncogenic roles in the context of signal transcription and microRNA regulation. We will also review the main upstream and downstream targets of Sox2, which can be potentially used as therapeutic measures to treat cancer with abnormal levels of Sox2.
    Cellular signalling 02/2013; · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages, which exhibit great plasticity, are important components of the inflamed tissue and constitute an essential element of regenerative responses. Epithelial Wnt signalling is involved in mechanisms of proliferation and differentiation and expression of Wnt ligands by macrophages has been reported. We aim to determine whether the macrophage phenotype determines the expression of Wnt ligands, the influence of the macrophage phenotype in epithelial activation of Wnt signalling and the relevance of this pathway in ulcerative colitis. Human monocyte-derived macrophages and U937-derived macrophages were polarized towards M1 or M2 phenotypes and the expression of Wnt1 and Wnt3a was analyzed by qPCR. The effects of macrophages and the role of Wnt1 were analyzed on the expression of β-catenin, Tcf-4, c-Myc and markers of cell differentiation in a co-culture system with Caco-2 cells. Immunohistochemical staining of CD68, CD206, CD86, Wnt1, β-catenin and c-Myc were evaluated in the damaged and non-damaged mucosa of patients with UC. We also determined the mRNA expression of Lgr5 and c-Myc by qPCR and protein levels of β-catenin by western blot. Results show that M2, and no M1, activated the Wnt signaling pathway in co-culture epithelial cells through Wnt1 which impaired enterocyte differentiation. A significant increase in the number of CD206+ macrophages was observed in the damaged mucosa of chronic vs newly diagnosed patients. CD206 immunostaining co-localized with Wnt1 in the mucosa and these cells were associated with activation of canonical Wnt signalling pathway in epithelial cells and diminution of alkaline phosphatase activity. Our results show that M2 macrophages, and not M1, activate Wnt signalling pathways and decrease enterocyte differentiation in co-cultured epithelial cells. In the mucosa of UC patients, M2 macrophages increase with chronicity and are associated with activation of epithelial Wnt signalling and diminution in enterocyte differentiation.
    PLoS ONE 01/2013; 8(10):e78128. · 3.73 Impact Factor