Structural and functional divergence within the Dim1/KsgA family of rRNA methyltransferases.

Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, 23219, USA.
Journal of Molecular Biology (Impact Factor: 3.96). 07/2009; 391(5):884-93. DOI: 10.1016/j.jmb.2009.06.015
Source: PubMed

ABSTRACT The enzymes of the KsgA/Dim1 family are universally distributed throughout all phylogeny; however, structural and functional differences are known to exist. The well-characterized function of these enzymes is to dimethylate two adjacent adenosines of the small ribosomal subunit in the normal course of ribosome maturation, and the structures of KsgA from Escherichia coli and Dim1 from Homo sapiens and Plasmodium falciparum have been determined. To this point, no examples of archaeal structures have been reported. Here, we report the structure of Dim1 from the thermophilic archaeon Methanocaldococcus jannaschii. While it shares obvious similarities with the bacterial and eukaryotic orthologs, notable structural differences exist among the three members, particularly in the C-terminal domain. Previous work showed that eukaryotic and archaeal Dim1 were able to robustly complement for KsgA in E. coli. Here, we repeated similar experiments to test for complementarity of archaeal Dim1 and bacterial KsgA in Saccharomyces cerevisiae. However, neither the bacterial nor the archaeal ortholog could complement for the eukaryotic Dim1. This might be related to the secondary, non-methyltransferase function that Dim1 is known to play in eukaryotic ribosomal maturation. To further delineate regions of the eukaryotic Dim1 critical to its function, we created and tested KsgA/Dim1 chimeras. Of the chimeras, only one constructed with the N-terminal domain from eukaryotic Dim1 and the C-terminal domain from archaeal Dim1 was able to complement, suggesting that eukaryotic-specific Dim1 function resides in the N-terminal domain also, where few structural differences are observed between members of the KsgA/Dim1 family. Future work is required to identify those determinants directly responsible for Dim1 function in ribosome biogenesis. Finally, we have conclusively established that none of the methyl groups are critically important to growth in yeast under standard conditions at a variety of temperatures.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The KsgA methyltransferase is universally conserved and plays a key role in regulating ribosome biogenesis. KsgA has a complex reaction mechanism, transferring a total of four methyl groups onto two separate adenosine residues, A1518 and A1519, in the small subunit rRNA. This means that the active site pocket must accept both adenosine and N(6)-methyladenosine as substrates to catalyze formation of the final product N(6),N(6)-dimethyladenosine. KsgA is related to DNA adenosine methyltransferases, which transfer only a single methyl group to their target adenosine residue. We demonstrate that part of the discrimination between mono- and dimethyltransferase activity lies in a single residue in the active site, L114; this residue is part of a conserved motif, known as motif IV, which is common to a large group of S-adenosyl-L-methionine-dependent methyltransferases. Mutation of the leucine to a proline mimics the sequence found in DNA methyltransferases. The L114P mutant of KsgA shows diminished overall activity, and its ability to methylate the N(6)-methyladenosine intermediate to produce N(6),N(6)-dimethyladenosine is impaired; this is in contrast to a second active site mutation, N113A, which diminishes activity to a level comparable to L114P without affecting the methylation of N(6)-methyladenosine. We discuss the implications of this work for understanding the mechanism of KsgA's multiple catalytic steps.
    Biochemistry 12/2011; 51(1):466-74. DOI:10.1021/bi201539j · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The KsgA/Dim1 family of proteins is intimately involved in ribosome biogenesis in all organisms. These enzymes share the common function of dimethylating two adenosine residues near the 3'-OH end of the small subunit rRNA; orthologs in the three kingdoms, along with eukaryotic organelles, have evolved additional functions in rRNA processing, ribosome assembly, and, surprisingly, transcription in mitochondria. The methyltransferase reaction is intriguingly elaborate. The enzymes can bind to naked small subunit rRNA but cannot methylate their target bases until a subset of ribosomal proteins have bound and the nascent subunit has reached a certain level of maturity. Once this threshold is reached, the enzyme must stabilize two adenosines into the active site at separate times and two methyl groups must be transferred to each adenosine, with concomitant exchanges of the product S-adenosyl-l-homocysteine and the methyl donor substrate S-adenosyl-l-methionine. A detailed molecular understanding of this mechanism is currently lacking. Structural analysis of the interactions between the enzyme and substrate will aid in this understanding. Here we present the structure of KsgA from Methanocaldococcus jannaschii in complex with several ligands, including the first structure of S-adenosyl-l-methionine bound to a KsgA/Dim1 enzyme in a catalytically productive way. We also discuss the inability thus far to determine a structure of a target adenosine bound in its active site.
    Biochemistry 02/2010; 49(12):2697-704. DOI:10.1021/bi901875x · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dimethyladenosine transferase (KsgA) performs diverse roles in bacteria including ribosomal maturation, DNA mismatch repair, and synthesis of KsgA is responsive to antibiotics and cold temperature. We previously showed that ksgA mutation in Salmonella Enteritidis results in impaired invasiveness in human and avian epithelial cells. In this study, we tested the virulence of ksgA mutant (ksgA::Tn5) of S. Enteritidis in orally challenged one-day-old chickens. The ksgA::Tn5 showed significantly reduced intestinal colonization and organ invasiveness in chickens when compared to the wild-type parent (WT). Phenotype Microarray (PM) was employed to compare ksgA::Tn5 and its isogenic wild-type strain for 920 phenotypes at 28°C, 37°C and 42°C. At chicken body temperature (42°C), ksgA::Tn5 showed significantly reduced respiratory activity with respect to a number of carbon, nitrogen, phosphate, sulfur and peptide nitrogen nutrients. The greatest differences were observed in the osmolyte panel at concentrations ≥6% NaCl at 37°C and 42°C. In contrast, no major differences were observed at 28°C. In independent growth assays, ksgA::Tn5 displayed a severe growth defect in high osmolarity (6.5% NaCl) conditions in nutrient rich (LB) and nutrient limiting (M9 minimum salts) media at 42°C. Moreover, ksgA::Tn5 showed significantly reduced tolerance to oxidative stress, but its survival within macrophages was not impaired. Unlike E. coli, ksgA::Tn5 did not display a cold-sensitivity phenotype; however, it showed resistance to kasugamycin and increased susceptibility to chloramphenicol. To the best of our knowledge, this is the first report showing the role of ksgA in S. Enteritidis virulence in chickens, tolerance to high osmolarity and altered susceptibility to kasugamycin and chloramphenicol.
    Applied and Environmental Microbiology 10/2013; DOI:10.1128/AEM.03040-13 · 3.95 Impact Factor


Available from