Human Fear Conditioning and Extinction in Neuroimaging: A Systematic Review

Department of Psychiatry, University of Muenster, Muenster, Germany.
PLoS ONE (Impact Factor: 3.53). 02/2009; 4(6):e5865. DOI: 10.1371/journal.pone.0005865
Source: PubMed

ABSTRACT Fear conditioning and extinction are basic forms of associative learning that have gained considerable clinical relevance in enhancing our understanding of anxiety disorders and facilitating their treatment. Modern neuroimaging techniques have significantly aided the identification of anatomical structures and networks involved in fear conditioning. On closer inspection, there is considerable variation in methodology and results between studies. This systematic review provides an overview of the current neuroimaging literature on fear conditioning and extinction on healthy subjects, taking into account methodological issues such as the conditioning paradigm. A Pubmed search, as of December 2008, was performed and supplemented by manual searches of bibliographies of key articles. Two independent reviewers made the final study selection and data extraction. A total of 46 studies on cued fear conditioning and/or extinction on healthy volunteers using positron emission tomography or functional magnetic resonance imaging were reviewed. The influence of specific experimental factors, such as contingency and timing parameters, assessment of conditioned responses, and characteristics of conditioned and unconditioned stimuli, on cerebral activation patterns was examined. Results were summarized descriptively. A network consisting of fear-related brain areas, such as amygdala, insula, and anterior cingulate cortex, is activated independently of design parameters. However, some neuroimaging studies do not report these findings in the presence of methodological heterogeneities. Furthermore, other brain areas are differentially activated, depending on specific design parameters. These include stronger hippocampal activation in trace conditioning and tactile stimulation. Furthermore, tactile unconditioned stimuli enhance activation of pain related, motor, and somatosensory areas. Differences concerning experimental factors may partly explain the variance between neuroimaging investigations on human fear conditioning and extinction and should, therefore, be taken into serious consideration in the planning and the interpretation of research projects.


Available from: Pienie Zwitserlood, Apr 17, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Posttraumatic stress disorder (PTSD) is a frequent anxiety disorder with higher prevalence rates in female patients than in male patients (2.5:1). Association with a single nucleotide polymorphism (rs2267735) in the gene ADCYAP1R1 encoding the type I receptor (PAC1-R) of the pituitary adenylate cyclase activating polypeptide has been reported with PTSD in female patients. We sought to identify the neural correlates of the described PAC1-R effects on associative learning. In a reverse genetic approach, we examined two independent healthy samples (N1 = 112, N2 = 73) using functional magnetic resonance imaging during cued and contextual fear conditioning. Skin conductance responses and verbal self-reports of arousal, valence, and contingency were recorded. We found that PAC1-R modulates the blood oxygenation level-dependent response of the hippocampus. Specifically, we observed decreased hippocampal activity during contextual, but not during cued, fear conditioning in female participants carrying the PAC1-R risk allele. We observed no significant differences in conditionability for skin conductance responses, verbal reports, or activation in other brain regions between the genotype groups in female participants. Our results suggest that impaired contextual conditioning in the hippocampal formation may mediate the association between PAC1-R and PTSD symptoms. Our findings potentially identify a missing link between the involvement of PAC1-R in PTSD and the well-established structural and functional hippocampal deficits in these patients. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
    Biological Psychiatry 01/2015; DOI:10.1016/j.biopsych.2014.12.018 · 9.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fear learning in stressful situations is highly adaptive for survival by steering behavior in subsequent situations, but fear learning can become disproportionate in vulnerable individuals. Despite the potential clinical significance, the mechanism by which stress modulates fear learning is poorly understood. Memory theories state that stress can cause a shift away from more controlled processing depending on the hippocampus toward more reflexive processing supported by the amygdala and striatum. This shift may be mediated by activation of the mineralocorticoid receptor (MR) for cortisol. We investigated how stress shifts processes underlying cognitively demanding learning versus less demanding fear learning using a combined trace and delay fear conditioning paradigm. In a pharmacological functional magnetic resonance imaging study, we tested 101 healthy men probing the effects of stress (socially evaluated cold pressor vs. control procedure) and MR-availability (400 mg spironolactone vs. placebo) in a randomized, placebo-controlled, full-factorial, between-subjects design. Effective stress induction and successful conditioning were confirmed by subjective, physiologic, and somatic data. In line with a stress-induced shift, stress enhanced later recall of delay compared with trace conditioning in the MR-available groups as indexed by skin conductance responses. During learning, this was accompanied by a stress-induced reduction of learning-related hippocampal activity for trace conditioning. The stress-induced shift in fear and neural processing was absent in the MR-blocked groups. Our results are in line with a stress-induced shift in fear learning, mediated by the MR, resulting in a dominance of cognitively less demanding amygdala-based learning, which might be particularly prominent in individuals with high MR sensitivity. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
    Biological Psychiatry 02/2015; DOI:10.1016/j.biopsych.2015.02.014 · 9.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous research suggests disturbed emotional learning and memory in borderline personality disorder (BPD). Studies investigating the neural correlates of aversive differential delay conditioning in BPD are currently lacking. We aimed to investigate acquisition, within-session extinction, between-session extinction recall, and reacquisition. We expected increased activation in the insula, amygdala, and anterior cingulate, and decreased prefrontal activation in BPD patients. During functional magnetic resonance imaging, 27 medication-free female BPD patients and 26 female healthy controls (HC) performed a differential delay aversive conditioning paradigm. An electric shock served as unconditioned stimulus, two neutral pictures as conditioned stimuli (CS+/CS-). Dependent variables were blood-oxygen-level-dependent response, skin conductance response (SCR), and subjective ratings (valence, arousal). No significant between-group differences in brain activation were found [all p(FDR) > 0.05]. Within-group comparisons for CS+unpaired > CS- revealed increased insula activity in BPD patients but not in HC during early acquisition; during late acquisition, both groups recruited fronto-parietal areas [p(FDR) < 0.05]. During extinction, BPD patients rated both CS+ and CS- as significantly more arousing and aversive than HC and activated the amygdala in response to CS+. In contrast, HC showed increased prefrontal activity in response to CS+ > CS during extinction. During extinction recall, there was a trend for stronger SCR to CS+ > CS in BPD patients. Amygdala habituation to CS+paired (CS+ in temporal contingency with the aversive event) during acquisition was found in HC but not in patients. Our findings suggest altered temporal response patterns in terms of increased vigilance already during early acquisition and delayed extinction processes in individuals with BPD.
    European Archives of Psychiatry and Clinical Neuroscience 03/2015; DOI:10.1007/s00406-015-0593-1 · 3.36 Impact Factor