Article

Cardiac anti-remodelling effect of aerobic training is associated with a reduction in the calcineurin/NFAT signalling pathway in heart failure mice.

School of Physical Education and Sport, University of Sao Paulo, SP, Brazil.
The Journal of Physiology (Impact Factor: 4.38). 07/2009; 587(Pt 15):3899-910. DOI: 10.1113/jphysiol.2009.173948
Source: PubMed

ABSTRACT Cardiomyocyte hypertrophy occurs in response to a variety of physiological and pathological stimuli. While pathological hypertrophy in heart failure is usually coupled with depressed contractile function, physiological hypertrophy associates with increased contractility. In the present study, we explored whether 8 weeks of moderate intensity exercise training would lead to a cardiac anti-remodelling effect in an experimental model of heart failure associated with a deactivation of a pathological (calcineurin/NFAT, CaMKII/HDAC) or activation of a physiological (Akt-mTOR) hypertrophy signalling pathway. The cardiac dysfunction, exercise intolerance, left ventricle dilatation, increased heart weight and cardiomyocyte hypertrophy from mice lacking alpha(2A) and alpha(2C) adrenoceptors (alpha(2A)/alpha(2C)ARKO mice) were associated with sympathetic hyperactivity induced heart failure. The relative contribution of Ca(2+)-calmodulin high-affinity (calcineurin/NFAT) and low-affinity (CaMKII/HDAC) targets to pathological hypertrophy of alpha(2A)/alpha(2C)ARKO mice was verified. While nuclear calcineurin B, NFATc3 and GATA-4 translocation were significantly increased in alpha(2A)/alpha(2C)ARKO mice, no changes were observed in CaMKII/HDAC activation. As expected, cyclosporine treatment decreased nuclear translocation of calcineurin/NFAT in alpha(2A)/alpha(2C)ARKO mice, which was associated with improved ventricular function and a pronounced anti-remodelling effect. The Akt/mTOR signalling pathway was not activated in alpha(2A)/alpha(2C)ARKO mice. Exercise training improved cardiac function and exercise capacity in alpha(2A)/alpha(2C)ARKO mice and decreased heart weight and cardiomyocyte width paralleled by diminished nuclear NFATc3 and GATA-4 translocation as well as GATA-4 expression levels. When combined, these findings support the notion that deactivation of calcineurin/NFAT pathway-induced pathological hypertrophy is a preferential mechanism by which exercise training leads to the cardiac anti-remodelling effect in heart failure.

0 Bookmarks
 · 
130 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Knockout mice lacking both α2A/α2C-adrenergic receptors (α2A/α2C-ARKO) provide a model for understanding the mechanisms underlying the deleterious effects of sympathetic hyperactivity on the cardiovascular system. Thus, in the present study we investigated the vascular reactivity of large and small arteries of α2A/α2C-ARKO mice. Aorta and mesenteric small arteries (MSA) from 7-month-old male α2A/α2C-ARKO mice and congenic C57BL6/J mice (wild-type, WT) were studied. In the aorta, noradrenaline- and serotonin-induced contraction was similar between groups, but in MSA there was an increase in agonist-induced contraction in α2A/α2C-ARKO compared to WT. The L-NAME effect was reduced in MSA α2A/α2C-ARKO mice compared to WT, as was basal nitric oxide (NO) evaluated by a DAF-2 probe. Increased total endothelial NO synthase (eNOS) protein expression was observed in MSA from α2A/α2C-ARKO mice, while the dimer/monomer ratio of eNOS was decreased. MSA from α2A/α2C-ARKO mice showed an increase in ethidium bromide (EB) positive nuclei, indicating oxidative stress, which was attenuated by L-NAME incubation. The sympathetic hyperactivity present in α2A/α2C-ARKO mice alters vascular reactivity only in certain types of arteries. Moreover, after chronic sympathetic hyperactivity, uncoupling eNOS may be a significant source of superoxide anion and reduced NO bioavailability in small vessels, increasing the contractile tone.This article is protected by copyright. All rights reserved
    Experimental physiology 07/2014; 99(10). DOI:10.1113/expphysiol.2014.079236 · 2.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac hypertrophy is a primary predictor of progressive heart disease that often results in heart failure. Growing evidence has demonstrated that microRNAs (miRNAs) play a critical role in regulating cardiac hypertrophy. This study was designed to evaluate the effect of miR-328 on cardiac hypertrophy and the potential molecular mechanisms. We found that transgenic overexpression of miR-328 in the heart induced cardiac hypertrophy in mice, which was accompanied by reduced SERCA2a level increased intracellular calcium concentration and calcineurin protein level, and enhanced NFATc3 nuclear translocation. However, normalization of miR-328 level by its antisense chemically modified with locked nucleic acid (LNA-antimiR-328) reversed the changes. Forced expression of miR-328 resulted in cardiomyocyte hypertrophy in cultured neonatal rat ventricular cells, which was accompanied by downregulation of SERCA2a expression and activation of the calcineurin/NFATc3 signaling pathway. These changes were abolished by LNA-antimiR-328. We validated the SERCA2a as a direct target for miR-328. MiR-328 expression was upregulated in cardiomyocyte treated with isoproterenol (ISO) to induce hypertrophy; while knockdown of miR-328 attenuated the hypertrophic responses. The level of miR-328 was significantly elevated in a mouse model of hypertrophy by thoracic aortic banding (TAC). Consistently, SERCA2a was downregulated, whereas calcineurin were upregulated, and NFATc3 nuclear translocation was enhanced. In contrast, hypertrophy in these mice was significantly alleviated when treated with miR-328 antisense. MiR-328 promotes cardiac hypertrophy by targeting SERCA2a. Our study therefore uncovered a novel molecular mechanism for cardiac hypertrophy and indicated miR-328 as a potential therapeutic target for this cardiac condition.
    International journal of cardiology 02/2014; DOI:10.1016/j.ijcard.2014.02.035 · 6.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRs) are a class of small non-coding RNAs that regulate gene expression. Studies of transgenic mouse models have indicated that deregulation of a single miR can induce pathological cardiac hypertrophy and cardiac failure. The roles of miRs in the genesis of physiological left ventricular hypertrophy (LVH), however, are not well understood. To evaluate the global miR expression in an experimental model of exercise-induced LVH. Male Balb/c mice were divided into sedentary (SED) and exercise (EXE) groups. Voluntary exercise was performed on an odometer-monitored metal wheels for 35 days. Various tests were performed after 7 and 35 days of training, including a transthoracic echocardiography, a maximal exercise test, a miR microarray (miRBase v.16) and qRT-PCR analysis. The ratio between the left ventricular weight and body weight was increased by 7% in the EXE group at day 7 (p<0.01) and by 11% at day 35 of training (p<0.001). After 7 days of training, the microarray identified 35 miRs that were differentially expressed between the two groups: 20 were up-regulated and 15 were down-regulated in the EXE group compared with the SED group (p = 0.01). At day 35 of training, 25 miRs were differentially expressed: 15 were up-regulated and 10 were decreased in the EXE animals compared with the SED animals (p<0.01). The qRT-PCR analysis demonstrated an increase in miR-150 levels after 35 days and a decrease in miR-26b, miR-27a and miR-143 after 7 days of voluntary exercise. We have identified new miRs that can modulate physiological cardiac hypertrophy, particularly miR-26b, -150, -27a and -143. Our data also indicate that previously established regulatory gene pathways involved in pathological LVH are not changed in physiological LVH.
    PLoS ONE 04/2014; 9(4):e93271. DOI:10.1371/journal.pone.0093271 · 3.53 Impact Factor

Full-text (2 Sources)

Download
49 Downloads
Available from
May 31, 2014