Cardiac anti-remodelling effect of aerobic training is associated with a reduction in the calcineurin/NFAT signalling pathway in heart failure mice.

School of Physical Education and Sport, University of Sao Paulo, SP, Brazil.
The Journal of Physiology (Impact Factor: 4.54). 07/2009; 587(Pt 15):3899-910. DOI: 10.1113/jphysiol.2009.173948
Source: PubMed

ABSTRACT Cardiomyocyte hypertrophy occurs in response to a variety of physiological and pathological stimuli. While pathological hypertrophy in heart failure is usually coupled with depressed contractile function, physiological hypertrophy associates with increased contractility. In the present study, we explored whether 8 weeks of moderate intensity exercise training would lead to a cardiac anti-remodelling effect in an experimental model of heart failure associated with a deactivation of a pathological (calcineurin/NFAT, CaMKII/HDAC) or activation of a physiological (Akt-mTOR) hypertrophy signalling pathway. The cardiac dysfunction, exercise intolerance, left ventricle dilatation, increased heart weight and cardiomyocyte hypertrophy from mice lacking alpha(2A) and alpha(2C) adrenoceptors (alpha(2A)/alpha(2C)ARKO mice) were associated with sympathetic hyperactivity induced heart failure. The relative contribution of Ca(2+)-calmodulin high-affinity (calcineurin/NFAT) and low-affinity (CaMKII/HDAC) targets to pathological hypertrophy of alpha(2A)/alpha(2C)ARKO mice was verified. While nuclear calcineurin B, NFATc3 and GATA-4 translocation were significantly increased in alpha(2A)/alpha(2C)ARKO mice, no changes were observed in CaMKII/HDAC activation. As expected, cyclosporine treatment decreased nuclear translocation of calcineurin/NFAT in alpha(2A)/alpha(2C)ARKO mice, which was associated with improved ventricular function and a pronounced anti-remodelling effect. The Akt/mTOR signalling pathway was not activated in alpha(2A)/alpha(2C)ARKO mice. Exercise training improved cardiac function and exercise capacity in alpha(2A)/alpha(2C)ARKO mice and decreased heart weight and cardiomyocyte width paralleled by diminished nuclear NFATc3 and GATA-4 translocation as well as GATA-4 expression levels. When combined, these findings support the notion that deactivation of calcineurin/NFAT pathway-induced pathological hypertrophy is a preferential mechanism by which exercise training leads to the cardiac anti-remodelling effect in heart failure.

Download full-text


Available from: Julio Cesar Batista Ferreira, Jul 17, 2015
  • Source
    • "These data suggest that improved cardiac function associated with sustained ARB treatment may be also due to the diminished CAMKII pathway activation. We have recently reported that CAMKII pathway is hyper-activated in sympathetic hyperactivity-induced HF, and β-blocker therapy reduced its activation and re-established cardiac function (Bartholomeu et al., 2008; Oliveira et al., 2009). Since CAMKII is a well known substrate of angiotensin II receptor-activated kinases (i.e. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The clinical benefits of angiotensin II type 1 (AT1) receptor blockers (ARB) in heart failure (HF) include cardiac anti-remodeling and improved ventricular function. However, the cellular mechanisms underlying the benefits of ARB on ventricular function need to be better clarified. In the present manuscript, we evaluated the effects of AT1 receptor blockade on the net balance of Ca(2+) handling proteins in hearts of mice lacking α(2A) and α(2C) adrenoceptors (α(2A)/α(2C)ARKO), which develop sympathetic hyperactivity (SH) induced-HF. A cohort of male wild-type (WT) and congenic α(2A)/α(2C)ARKO mice in a C57BL6/J genetic background (5-7mo of age) was randomly assigned to receive either placebo or ARB (Losartan, 10mg/kg for 8wks). Ventricular function (VF) was assessed by echocardiography, and cardiac myocyte width and ventricular fibrosis by a computer-assisted morphometric system. Sarcoplasmic reticulum Ca(2+) ATPase (SERCA2), phospholamban (PLN), phospho-Ser(16)-PLN, phospho-Thr(17)-PLN, phosphatase 1 (PP1), Na(+)-Ca(2+) exchanger (NCX), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and phospho-Thr(286)-CaMKII were analyzed by Western blot. α(2A)/α(2C)ARKO mice displayed ventricular dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis paralleled by decreased SERCA2 and increased phospho-Thr(17)-PLN, CaMKII, phospho-Thr(286)-CaMKII and NCX levels. ARB induced anti-cardiac remodeling effect and improved VF in α(2A)/α(2C)ARKO associated with increased SERCA2 and phospho-Ser(16)-PLN levels, and SERCA2:NCX ratio. Additionally, ARB decreased phospho-Thr(17)-PLN levels as well as reestablished NCX, CaMKII and phospho-Thr(286)-CaMKII toward WT levels. Altogether, these data provide new insights on intracellular Ca(2+) regulatory mechanisms underlying improved ventricular function by ARB therapy in HF.
    Life sciences 03/2011; 88(13-14):578-85. DOI:10.1016/j.lfs.2011.01.009 · 2.30 Impact Factor
  • Source
    • "In a recent issue of The Journal of Physiology, Oliveira et al. presented data suggesting that aerobic training prevents the development of maladaptive hypertrophy in a genetically defined mouse HF model (Oliveira et al. 2009). Mice with knockout of α 2A and α 2C receptors (ARKO mice) develop severe cardiac dysfunction, exercise intolerance and increased mortality by 7 months of age (Brum et al. 2002 "
    The Journal of Physiology 11/2009; 587(Pt 21):5011-3. DOI:10.1113/jphysiol.2009.181339 · 4.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The renin-angiotensin (Ang) system plays a pivotal role in the pathogenesis of cardiovascular disease, with Ang II being the major effector of this system. Multiple lines of evidence have shown that Ang-(1-7) exerts cardioprotective effects in the heart by counterregulating Ang II actions. The questions that remain are how and where Ang-(1-7) exerts its effects. By using a combination of molecular biology, confocal microscopy, and a transgenic rat model with increased levels of circulating Ang-(1-7) (TGR[A1-7]3292), we evaluated the signaling pathways involved in Ang-(1-7) cardioprotection against Ang II-induced pathological remodeling in ventricular cardiomyocytes. Rats were infused with Ang II for 2 weeks. We found that ventricular myocytes from TGR(A1-7)3292 rats are protected from Ang II pathological remodeling characterized by Ca(2+) signaling dysfunction, hypertrophic fetal gene expression, glycogen synthase kinase 3beta inactivation, and nuclear factor of activated T-cells nuclear accumulation. Moreover, cardiomyocytes from TGR(A1-7)3292 rats infused with Ang II presented increased expression levels of neuronal NO synthase. To provide a signaling pathway involved in the beneficial effects of Ang-(1-7), we treated neonatal cardiomyocytes with Ang-(1-7) and Ang II for 36 hours. Treatment of cardiomyocytes with Ang-(1-7) prevented Ang II-induced hypertrophy by modulating calcineurin/nuclear factor of activated T-cell signaling cascade. Importantly, antihypertrophic effects of Ang-(1-7) on Ang II-treated cardiomyocytes were prevented by N(G)-nitro-l-arginine methyl ester and 1H-1,2,4oxadiazolo4,2-aquinoxalin-1-one, suggesting that these effects are mediated by NO/cGMP. Taken together, these data reveal a key role for NO/cGMP as a mediator of Ang-(1-7) beneficial effects in cardiac cells.
    Hypertension 12/2009; 55(1):153-60. DOI:10.1161/HYPERTENSIONAHA.109.143255 · 7.63 Impact Factor
Show more