Article

Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro

Department of Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang province 310009, PR China.
Differentiation (Impact Factor: 2.84). 07/2009; 77(5):483-91. DOI: 10.1016/j.diff.2009.01.001
Source: PubMed

ABSTRACT It was recently reported that pluripotent mesenchymal stem cells (MSCs) in rodent bone marrow (BM) have the capacity to generate insulin-producing cells (IPCs) in vitro. However, little is known about this capacity in human BM-MSCs. We developed a nongenetic method to induce human BM-MSCs to transdifferentiate into IPCs both phenotypically and functionally. BM-MSCs from 12 human donors were sequentially cultured in specially defined conditions. Their differentiation extent toward beta-cell phenotype was evaluated systemically. Specifically, after induction human BM-MSCs formed spheroid islet-like clusters containing IPCs, which was further confirmed by dithizone (DTZ) staining and electron microscopy. These IPCs expressed multiple genes related to the development or function of pancreatic beta cells (including NKX6.1, ISL-1, Beta2/Neurod, Glut2, Pax6, nestin, PDX-1, ngn3, insulin and glucagon). The coexpression of insulin and c-peptide was observed in IPCs by immunofluorescence. Moreover, they were able to release insulin in a glucose-dependent manner and ameliorate the diabetic conditions of streptozotocin (STZ)-treated nude mice. These results indicate that human BM-MSCs might be an available candidate to overcome limitations of islet transplantation.

3 Followers
 · 
153 Views
 · 
0 Downloads
  • Source
    • "The research by Hisanaga and colleagues showed that the plasma glucose level of STZ-induced diabetic mice markedly fell after the allograft with 5 × 107 induced mouse BMSCs in adherence and the effect continued for at least 4 weeks [7]. Xie and colleagues ameliorated the diabetic conditions of STZ-treated mice by the transplantation of IPCs derived from BMSCs [9]. In this study, the hyperglycemia of diabetic nude mice was normalized by transplanting 600 pancreatic islet-like cell clusters (about 7.2 × 105 cells) from hfBMSCs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Bone marrow mesenchymal stem cells (BMSCs) possess low immunogenicity and immunosuppression as an allograft, can differentiate into insulin-producing cells (IPCs) by in vitro induction, and may be a valuable cell source to regenerate pancreatic islets. However, the very low differentiation efficiency of BMSCs towards IPCs under adherent induction has thus far hindered the clinical exploitation of these cells. The aim of this study is to explore a new way to efficiently induce BMSCs into IPCs and lay the groundwork for their clinical exploitation. Methods In comparison with adherent induction, BMSCs of human first-trimester abortus (hfBMSCs) under a nonadherent state were induced towards IPCs in noncoated plastic dishes using a three-stage induction procedure developed by the authors. Induction effects were evaluated by statistics of the cell clustering rate of induced cells, and ultrastructural observation, dithizone staining, quantitative polymerase chain reaction and immunofluorescence assay, insulin and c-peptide release under glucose stimulus of cell clusters, as well as transplantation test of the cell clusters in diabetic model mice. Results With (6.175 ± 0.263) × 105 cells in 508.5 ± 24.5 cell clusters, (3.303 ± 0.331) × 105 single cells and (9.478 ± 0.208) × 105 total cell count on average, 65.08 ± 2.98% hfBMSCs differentiated into pancreatic islet-like cell clusters after nonadherent induction. With (3.993 ± 0.344) × 105 cells in 332.3 ± 41.6 cell clusters, (5.437 ± 0.434) × 105 single cells and (9.430 ± 0.340) × 105 total cell count on average, 42.37 ± 3.70% hfBMSCs differentiated into pancreatic islet-like cell clusters after adherent induction (P < 0.01, n = 10). The former is significantly higher than the latter. Calculated according to the cell clustering rate and IPC percentage in the cell clusters, 29.80 ± 3.95% hfBMSCs differentiated into IPCs after nonadherent induction and 18.40 ± 2.08% hfBMSCs differentiated into IPCs after adherent induction (P < 0.01, n = 10), the former significantly higher than the latter. The cell clusters expressed a broad gene profile related to pancreatic islet cells, released insulin and c-peptide in a glucose concentration-dependent manner, and normalized hyperglycemia of streptozocin-induced mice for at least 80 days following xenograft. Blood glucose of grafted mice rose again after their graft removed. A series of examination of the grafts showed that transplanted cells produced human insulin in recipients. Conclusions Our studies demonstrate that nonadherent induction can greatly promote BMSCs to form pancreatic islet-like cell clusters, thereby improving the differentiation efficiency of BMSCs towards IPCs.
    Stem Cell Research & Therapy 05/2014; 5(3):66. DOI:10.1186/scrt455 · 4.63 Impact Factor
  • Source
    • "Human umbilical cord Wharton’s jelly is a new source of MSCs that exhibit a high degree of self-renewal capacity and multi-differentiation potential. Human umbilical cord Wharton’s jelly-derived mesenchymal stem cells (HUMSCs) have a wider range of collection sources than BMSCs (10) or ESCs (11), and can be easily collected with fewer ethical constraints. As an alternative source of MSCs, HUMSCs have promising clinical application prospects. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Islet transplantation involves the transplantation of pancreatic islets from the pancreas of a donor to another individual. It has proven to be an effective method for the treatment of type 1 diabetes. However, islet transplantation is hampered by immune rejection, as well as the shortage of donor islets. Human umbilical cord Wharton's jelly-derived mesenchymal stem cells (HUMSCs) are an ideal cell source for use in transplantation due to their biological characteristics and their use does not provoke any ethical issues. In this study, we investigated the immunological characteristics of HUMSCs and their effects on lymphocyte proliferation and the secretion of interferon (IFN)-γ, and explored whether direct cell-to-cell interactions and soluble factors, such as IFN-γ were important for balancing HUMSC-mediated immune regulation. We transplanted HUMSCs into diabetic rats to investigate whether these cells can colonize in vivo and differentiate into pancreatic β-cells, and whether the hyperglycemia of diabetic rats can be improved by transplantation. Our results revealed that HUMSCs did not stimulate the proliferation of lymphocytes and did not induce allogeneic or xenogeneic immune cell responses. qRT-PCR demonstrated that the HUMSCs produced an immunosuppressive isoform of human leukocyte antigen (HLA-I) and did not express HLA-DR. Flow cytometry revealed that the HUMSCs did not express immune response-related surface antigens such as, CD40, CD40L, CD80 and CD86. IFN-γ secretion by human peripheral blood lymphocytes was reduced when the cells were co-cultured with HUMSCs. These results suggest that HUMSCs are tolerated by the host in an allogeneic transplant. We transplanted HUMSCs into diabetic rats, and the cells survived in the liver and pancreas. Hyperglycemia of the diabetic rats was improved and the destruction of pancreatic cells was partly repaired by HUMSC transplantation. Hyperglycemic improvement may be related to the immunomodulatory effects of HUMSCs. However, the exact mechanisms involved remain to be further clarified.
    International Journal of Molecular Medicine 11/2013; 33(2). DOI:10.3892/ijmm.2013.1572 · 1.88 Impact Factor
  • Source
    • "In addition to their mesenchymal differentiation capacities , MSCs have a multidirectional differentiation potential including transdifferentiation into endothelial cells (Oswald et al., 2004), cardiocytes (Makino et al., 1999), neurocytes (Snykers et al., 2009; Weiss et al., 2006), insulin producing beta-cells (Xie et al., 2009) and hepatocyte-like cells (Hong et al., 2005; K.D. Lee et al., 2004; Snykers et al., 2009). However, their differentiation into these types of cells is still controversial. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been extensively investigated in small animal models to treat both acute and chronic liver injuries. Mechanisms of action are not clearly elucidated but may include their ability to differentiate into hepatocyte-like cells, to reduce inflammation, and to enhance tissue repair at the site of injury. This approach is controversial and evidence in large animals is missing. Side effects of MSC infusion such as the contribution to a fibrotic process have been reported in experimental settings. Nevertheless, MSCs moved quickly from bench to bedside and over 280 clinical trials are registered, of which 28 focus on the treatment of liver diseases. If no severe side-effects were observed so far, long-term benefits remain uncertain. More preclinical data regarding mechanisms of action, long term safety and efficacy are warranted before initiating large scale clinical application. The proposal of this review is to visit the current state of knowledge regarding mechanisms behind the therapeutic effects of MSCs in the treatment of experimental liver diseases, to address questions about efficacy and risk, and to discuss recent clinical advances involving MSC-based therapies.
    Stem Cell Research 08/2013; 11(3):1348-1364. DOI:10.1016/j.scr.2013.08.011 · 3.91 Impact Factor
Show more