The occurrence of domoic acid linked to a toxic diatom bloom in a new potential vector: the tunicate Pyura chilensis (piure).

Marine Toxins Laboratory, Physiology and Biophysics Program, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile.
Toxicon (Impact Factor: 2.58). 07/2009; 54(6):754-62. DOI: 10.1016/j.toxicon.2009.05.033
Source: PubMed

ABSTRACT The tunicate Pyura chilensis (Molina, 1782); Phylum Chordata; Subphylum Urochordata; Class Ascidiacea, common local name "piure" or sea squirt; a filter-feeder (plankton and suspended particles) sessile species; may play an important role in monitoring domoic acid (DA) the principal toxic component of Amnesic Shellfish Poisoning (ASP). Significant DA concentrations have been determined in tunicate samples, collected during a recent ASP outbreak in Bahía Inglesa, an important scallop (Argopecten purpuratus) farming area. Several infaunal species were tested for the presence of DA, in addition to the usual scallop monitoring programme. DA was found at sub-toxic levels in filtering bivalves such as mussels (Mytilus chilensis), large mussels (Aulacomya ater) and clams (Protothaca thaca) (6.4, 5.4 and 4.7 microg DA/g tissue respectively). Of particular interest was the observation of significant accumulations of toxic Pseudo-nitzschia sp. diatoms in the internal siphon and atrium spaces of the tunicate. Toxin distribution within major tunicate organs was heterogeneous with 8.7-15.5 microg DA/g in edible tissues, 14.9-17.9 microg DA/g in the fecal material and 13.6-32.7 microg DA/g in the gut content. DA was determined by HPLC-UV and confirmed by diode-array detection and LC-MS/MS analysis. This is the first report of the presence of DA in a tunicate that is regularly consumed by coastal populations. These results confirm the need to include these organisms in sanitation programs for marine toxins.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical marine toxicology is a rapidly changing area. Many of the new discoveries reported every year in Europe involve ecological disturbances-including global warming-that have induced modifications in the chorology, behavior, and toxicity of many species of venomous or poisonous aquatic life including algae, ascidians, fish and shellfish. These changes have raised a number of public issues associated, e.g., poisoning after ingestion of contaminated seafood, envenomation by fish stings, and exposure to harmful microorganism blooms. The purpose of this review of medical and scientific literature in marine toxicology is to highlight the growing challenges induced by ecological disturbances that confront clinical toxicologists during the everyday job in the European Poison Centers.
    Toxins 08/2013; 5(8):1343-52. DOI:10.3390/toxins5081343 · 2.48 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toxins known to cause Paralytic Shellfish Poisoning (PSP) syndrome in humans that can have serious economic consequences for aquaculture were determined in ascidians of the genus Microcosmus. Significant concentrations of toxins were confirmed in all tested samples collected from the western coast of Istria Peninsula (Adriatic Sea, Croatia) when six people were poisoned following the consumption of fresh ascidians. Several species of bivalves that were under continuous monitoring had not accumulated PSP toxins although they were exposed to the same environmental conditions over the survey period. In the present study, HPLC-FLD with pre-column oxidation of PSP toxins has been carried out to provide evidence for the first human intoxication due to consumption of PSP toxic ascidians (Microcosmus vulgaris, Heller, 1877) harvested from the Adriatic Sea. Qualitative analysis established the presence of six PSP toxins: saxitoxin (STX), decarbamoylsaxitoxin (dcSTX), gonyautoxins 2 and 3 (GTX2,3), decarbamoylgonyautoxins 2 and 3 (dcGTX2,3), gonyautoxin 5 (GTX5) and N-sulfocarbamoylgonyautoxins 1 and 2 (C1,2), while quantitative analysis suggested STX and GTX2,3 as dominant toxin types and the ones that contribute the most to the overall toxicity of these samples with concentrations near the regulatory limit.
    Toxicon 01/2014; DOI:10.1016/j.toxicon.2013.12.014 · 2.58 Impact Factor


Available from
Jun 4, 2014