Emodin enhances gefitinib-induced cytotoxicity via Rad51 downregulation and ERK1/2 inactivation.

Molecular Genetics of Microorganisms Laboratory, Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan.
Experimental Cell Research (Impact Factor: 3.37). 07/2009; 315(15):2658-72. DOI: 10.1016/j.yexcr.2009.06.002
Source: PubMed

ABSTRACT Emodin, a tyrosine kinase inhibitor, is a natural anthraquinone derivative found in the roots and rhizomes of numerous plants. It reportedly exhibits an anticancer effect on lung cancer. Gefitinib (Iressa) is a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor for human non-small cell lung cancer (NSCLC). However, the molecular mechanism of how emodin combined with gefitinib decreases NSCLC cell viability is unclear. The recombinase protein Rad51 is essential for homologous recombination repair, and Rad51 overexpression is resistant to DNA double-strand break-inducing cancer therapies. In this study, we found that emodin enhanced the cytotoxicity induced by gefitinib in two NSCLC cells lines, A549 and H1650. Emodin at low doses of 2-10 microM did not affect ERK1/2 activation, mRNA, and Rad51 protein levels; however, it enhanced a gefitinib-induced decrease in phospho-ERK1/2 and Rad51 protein levels by enhancing Rad51 protein instability. Expression of constitutively active MKK1/2 vectors (MKK1/2-CA) significantly rescued the reduced phospho-ERK1/2 and Rad51 protein levels as well as cell viability on gefitinib and emodin cotreatment. Blocking of ERK1/2 activation by U0126 (an MKK1/2 inhibitor) lowered Rad51 protein levels and cell viability in emodin-treated H1650 and A549 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA enhanced emodin cytotoxicity. In contrast, Rad51 overexpression protected the cells from the cytotoxic effects induced by emodin and gefitinib. Consequently, emodin-gefitinib cotreatment may serve as the basis for a novel and better therapeutic modality in the management of advanced lung cancer.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Emodin, a tyrosine kinase inhibitor, is a natural anthraquinone derivative found in the roots and rhizomes of numerous plants. The inhibitory effect of emodin on mammalian cell cycle modulation in specific oncogene-overexpressing cells has formed the basis for using this compound as an anticancer drug. Previous reviews have summarized the antitumor properties of emodin. However, the specific molecular mechanisms of emodin-mediated tumor inhibition have not been completely elucidated over the last 5 years. Recently, there has been great progress in the preclinical study of the anticancer mechanisms of emodin. Our recent study revealed that emodin has therapeutic effects on pancreatic cancer through various antitumor mechanisms. Notably, the therapeutic efficacy of emodin in combination with chemotherapy was found to be higher than the comparable single chemotherapeutic regime, and the combination therapy also exhibited fewer side-effects. Despite these encouraging results, further investigation is warranted as emodin has been shown to modulate one or more key regulators of cancer growth. This review provides an overview of the distinct mechanisms of anticancer action of emodin in different body systems identified over the past 5 years. These new breakthrough findings may have important implications for targeted cancer therapy and for the future clinical use of emodin.
    Oncology Reports 09/2013; 30(6). DOI:10.3892/or.2013.2741 · 2.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: DNA is the target of many traditional non-specific chemotherapeutic drugs. New drugs or therapeutic approaches with a more rational and targeted component are mandatory to improve the success of cancer therapy. The homologous recombination (HR) pathway is an attractive target for the development of inhibitors because cancer cells rely heavily on HR for repair of DNA double-strand breaks resulting from chemotherapeutic treatments. Additionally, the discovery that poly(ADP)ribose polymerase-1 inhibitors selectively kill cells with genetic defects in HR has spurned an even greater interest in inhibitors of HR. Areas covered: HR drives the repair of broken DNA via numerous protein-mediated sequential DNA manipulations. Due to extensive number of steps and proteins involved, the HR pathway provides a rich pool of potential drug targets. This review discusses the latest developments concerning the strategies being explored to inhibit HR. Particular attention is given to the identification of small molecule inhibitors of key HR proteins, including the BRCA proteins and RAD51. Expert opinion: Current HR inhibitors are providing the basis for pharmaceutical development of more potent and specific inhibitors to be applied in mono- or combinatorial therapy regimes, while novel targets will be uncovered by experiments aimed to gain a deeper mechanistic understanding of HR and its subpathways.
    Expert Opinion on Therapeutic Targets 02/2014; DOI:10.1517/14728222.2014.882900 · 4.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ochratoxin A (OTA), a mycotoxin produced by ubiquitous Aspergilli, is carcinogenic, teratogenic, and nephrotoxic in both humans and animals. Our previous study found that OTA induced DNA double-strand breaks (DSBs) and resulted in G2 phase arrest in human gastric epithelium immortalized (GES-1) cells. DSBs can cause genomic instability, mutations, and neoplastic transformations, and improper repair of DSBs may lead to the development of cancer. Rad51 is a key protein in the homologous recombination (HR) pathway of DSBs repair. The roles of Rad51 in the repair of DNA damage vary in response to different types of cytotoxic agents. The effect of OTA on Rad51 expression and its putative role in the OTA-induced DSBs in GES-1 cells are still not clear enough. The aim of the current study is to elucidate the role of Rad51 in OTA-induced DSBs in GES-1 cells. The results showed that OTA treatment decreased Rad51 expression in a dose- and time-dependent manner. Specific downregulation of Rad51 by siRNA induced DSBs and G2 phase arrest. Rad51 overexpression by transfection with a Rad51-expressing plasmid partly rescued the DSBs and G2 phase arrest in OTA-treated cells. The findings indicate that downregulation of Rad51 contributes to OTA-induced DNA damage in GES-1 cells. Knockdown of p53 with siRNA for 48h effectively reversed the downregulation of Rad51, and decreased the OTA-induced DSBs in GES-1 cells. In addition, the downregulation of Rad51 induced by OTA could be significantly attenuated with specific ERK inhibitor PD98059 or specific p38 MAPK inhibitor SB203580 pre-treatment in GES-1 cells. Thus, the results suggest that downregulation of Rad51 participates in OTA-induced DNA double-strand breaks in GES-1 cells in vitro. And p53, ERK and p38 signaling pathways are all involved in the process.
    Toxicology Letters 02/2014; DOI:10.1016/j.toxlet.2014.02.002 · 3.36 Impact Factor