Article

Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain.

Optics Express (Impact Factor: 3.53). 03/2006; 14(3):1125-44. DOI: 10.1364/OE.14.001125
Source: PubMed

ABSTRACT Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and during in-vivo cortical spreading depression (CSD) in rat brain. Three-dimensional images of CBF were obtained through intact skull in tissues(~4mm) deep below the cortex.

Download full-text

Full-text

Available from: Joel H Greenberg, Dec 17, 2013
0 Followers
 · 
116 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) are two diffuse optical technologies for brain imaging that are sensitive to changes in hemoglobin concentrations and blood flow, respectively. Measurements for both modalities are acquired on the scalp, and therefore hemodynamic processes in the extracerebral vasculature confound the interpretation of cortical hemodynamic signals. The sensitivity of NIRS to the brain versus the extracerebral tissue and the contrast-to-noise ratio (CNR) of NIRS to cerebral hemodynamic responses have been well characterized, but the same has not been evaluated for DCS. This is important to assess in order to understand their relative capabilities in measuring cerebral physiological changes. We present Monte Carlo simulations on a head model that demonstrate that the relative brain-to-scalp sensitivity is about three times higher for DCS (0.3 at 3 cm) than for NIRS (0.1 at 3 cm). However, because DCS has higher levels of noise due to photon-counting detection, the CNR is similar for both modalities in response to a physiologically realistic simulation of brain activation. Even so, we also observed higher CNR of the hemodynamic response during graded hypercapnia in adult subjects with DCS than with NIRS.
    07/2014; 1(1). DOI:10.1117/1.NPh.1.1.015005
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, there has been a great amount of interest in developing multi-modality imaging techniques for oncologic research and clinical studies with the aim of obtaining complementary information and, thus, improving the detection and characterization of tumors. In this present work, the details of a combined MR-diffuse optical imaging system for dual-modality imaging of small animals are given. As a part of this effort, a multi-spectral frequency domain diffuse optical tomography system is integrated with an MRI system. Here, a network analyzer provides the rf modulation signal for the laser diodes and measures the amplitude and the phase of the detected signals. Photomultiplier tubes are utilized to measure low-level signals. The integration of this optical imaging system with the 4T MRI system is realized by incorporating a fiber adaptive interface inside the MR magnet. Coregistration is achieved by a special probe design utilizing fiducial markers. A finite element algorithm is used to solve the diffusion equation and an inverse solver based on this forward solver is implemented to calculate the absorption and scattering maps from the acquired data. The MR a priori information is used to guide the optical reconstruction algorithm. Phantom studies show that the absorption coefficient of a 7 mm inclusion in an irregular object located in 64 mm phantom is recovered with 11% error when MR a priori information is used. ENU induced tumor model is used to test the performance of the system in vivo.
    Technology in cancer research & treatment 09/2006; 5(4):351-63. DOI:10.1177/153303460600500407 · 1.89 Impact Factor