Article

Identification and characterization of inhibitors of West Nile virus.

Wadsworth Center, New York State Department of Health, Albany, NY, USA.
Antiviral research (Impact Factor: 3.61). 07/2009; 83(1):71-9. DOI:10.1016/j.antiviral.2009.03.005
Source: PubMed

ABSTRACT Although flaviviruses cause significant human diseases, no antiviral therapy is currently available for clinical treatment of these pathogens. To identify flavivirus inhibitors, we performed a high-throughput screening of compound libraries using cells containing luciferase-reporting replicon of West Nile viruses (WNV). Five novel small molecular inhibitors of WNV were identified from libraries containing 96,958 compounds. The inhibitors suppress epidemic strain of WNV in cell culture, with EC(50) (50% effective concentration) values of <10microM and TI (therapeutic index) values of >10. Viral titer reduction assays, using various flaviviruses and nonflaviviruses, showed that the compounds have distinct antiviral spectra. Mode-of-action analysis showed that the inhibitors block distinct steps of WNV replication: four compounds inhibit viral RNA syntheses, while the other compound suppresses both viral translation and RNA syntheses. Biochemical enzyme assays showed that two compounds selectively inhibit viral RNA-dependent RNA polymerase (RdRp), while another compound specifically inhibits both RdRp and methyltransferase. The identified compounds could potentially be developed for treatment of flavivirus infections.

0 0
 · 
0 Bookmarks
 · 
69 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Arthropod-borne flavivirus infection causes serious morbidity and mortality worldwide, but there are currently no effective antiflaviviral chemotherapeutics available for human use. Therefore, it is critical that new therapeutics against virus-specific targets be developed. To identify new compounds that may be used as broadly active flavivirus therapeutics, we have performed a high-throughput screening of 235,456 commercially available compounds for small-molecule inhibitors of the dengue virus NS5 RNA capping enzyme. We identified a family of compounds, the 2-thioxothiazolidin-4-ones, that show potent biochemical inhibition of capping enzyme GTP binding and guanylyltransferase function. During the course of structure-activity relationship analysis, a molecule within this family, (E)-{3-[5-(4-tert-butylbenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid} (BG-323), was found to possess significant antiviral activity in a dengue virus subgenomic replicon assay. Further testing of BG-323 demonstrated that this molecule is able to reduce the replication of infectious West Nile virus and yellow fever virus in cell culture with low toxicity. The results of this study describe the first inhibitor that targets the GTP-binding/guanylyltransferase activity of the flavivirus RNA capping enzyme.
    Journal of Virology 06/2012; 86(16):8730-9. · 5.08 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: 1,2-Benzisothiazol-3(2H)-ones and 1,3,4-oxadiazoles individually have recently attracted considerable interest in drug discovery, including as antibacterial and antifungal agents. In this study, a series of functionalized 1,2-benzisothiazol-3(2H)-one-1,3,4-oxadiazole hybrid derivatives were synthesized and subsequently screened against Dengue and West Nile virus proteases. Ten out of twenty-four compounds showed greater than 50% inhibition against DENV2 and WNV proteases ([I]=10μM). The IC(50) values of compound 7n against DENV2 and WNV NS2B/NS3 were found to be 3.75±0.06 and 4.22±0.07μM, respectively. The kinetics data support a competitive mode of inhibition by compound 7n. Molecular modeling studies were performed to delineate the putative binding mode of this series of compounds. This study reveals that the hybrid series arising from the linking of the two scaffolds provides a suitable platform for conducting a hit-to-lead optimization campaign via iterative structure-activity relationship studies, in vitro screening and X-ray crystallography.
    Bioorganic & medicinal chemistry 11/2012; · 2.82 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The methyltransferase enzyme (MTase), which catalyzes the transfer of a methyl group from S-adenosyl-methionine (AdoMet) to viral RNA, and generates S-adenosyl-homocysteine (AdoHcy) as a by-product, is essential for the life cycle of many significant human pathogen flaviviruses. Here we investigated inhibition of the flavivirus MTase by several AdoHcy-derivatives. Unexpectedly we found that AdoHcy itself barely inhibits the flavivirus MTase activities, even at high concentrations. AdoHcy was also shown to not inhibit virus growth in cell-culture. Binding studies confirmed that AdoHcy has a much lower binding affinity for the MTase than either the AdoMet co-factor, or the natural AdoMet analog inhibitor sinefungin (SIN). While AdoMet is a positively charged molecule, SIN is similar to AdoHcy in being uncharged, and only has an additional amine group that can make extra electrostatic contacts with the MTase. Molecular Mechanics Poisson-Boltzmann Sovation Area analysis on AdoHcy and SIN binding to the MTase suggests that the stronger binding of SIN may not be directly due to interactions of this amine group, but due to distributed differences in SIN binding resulting from its presence. The results suggest that better MTase inhibitors could be designed by using SIN as a scaffold rather than AdoHcy.
    PLoS ONE 01/2013; 8(10):e76900. · 3.73 Impact Factor

Full-text (2 Sources)

View
0 Downloads
Available from
Apr 17, 2014