Article

Tst26, a novel peptide blocker of Kv1.2 and Kv1.3 channels from the venom of Tityus stigmurus.

Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98, Debrecen 4012, Hungary.
Toxicon (Impact Factor: 2.58). 07/2009; 54(4):379-89. DOI: 10.1016/j.toxicon.2009.05.023
Source: PubMed

ABSTRACT Using high-performance liquid chromatography Tst26, a novel potassium channel blocker peptide, was purified from the venom of the Brazilian scorpion Tityus stigmurus. Its primary structure was determined by means of automatic Edman degradation and mass spectrometry analysis. The peptide is composed of 37 amino acid residues and tightly folded through three disulfide bridges, similar to other K(+) channel blocking peptides purified from scorpion venoms. It contains the "essential dyad" for K(+) channel recognition comprised of a lysine at position 27 and a tyrosine at position 36. Electrophysiological assays revealed that Tst26 blocked hKv1.2 and hKv1.3 channels with high affinity (K(d)=1.9 nM and 10.7 nM, respectively) while it did not affect several other ion channels (mKv1.1, hKv1.4, hKv1.5, hERG, hIKCa1, hBK, hNav1.5) tested at 10 nM concentration. The voltage-dependent steady-state parameters of K(+) channel gating were unaffected by the toxin in both channels, but due to the fast association and dissociation kinetics Tst26 slowed the rate of inactivation of Kv1.3 channels. Based on the primary structure, the systematic nomenclature proposed for this peptide is alpha-KTx 4.6.

0 Followers
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peptide toxins synthesized by venomous animals have been extensively studied in the last decades. To be useful to the scientific community, this knowledge has been stored, annotated and made easy to retrieve by several databases. The aim of this article is to present what type of information users can access from each database. ArachnoServer and ConoServer focus on spider toxins and cone snail toxins, respectively. UniProtKB, a generalist protein knowledgebase, has an animal toxin-dedicated annotation program that includes toxins from all venomous animals. Finally, the ATDB metadatabase compiles data and annotations from other databases and provides toxin ontology.
    Toxins 02/2010; 2(2):262-82. DOI:10.3390/toxins2020262 · 2.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scorpion toxins are useful in the structure-function research of ion channels and valuable resources for drug design. The Kv1.3 channel is an important pharmacological target for the therapy of T cell-mediated autoimmune diseases, and many toxin peptides targeting Kv1.3 have been identified as good drug candidates in recent years. In this study, a novel toxin gene ImKTx88 was isolated from the venom of the scorpion Isometrus maculates through the construction of the cDNA library method, and the recombinant toxin peptide was purified and characterized physiologically. The mature peptide of ImKTx88 contained 39 amino acid residues including six cysteines and was predicted to be a new member of α-KTx scorpion family by sequence analysis. The electrophysiological experiments further indicated that the rImKTx88 peptide had a novel pharmacological profile: it inhibited Kv1.3 channel current with an IC₅₀ of 91 ± 42 pM, and exhibited very good selectivity for Kv1.3 over Kv1.1 (4200-fold) and Kv1.2 (93000-fold) channels, respectively. All these results suggested that, as a new selective Kv1.3 channel blocker, the ImKTx88 peptide may serve as a potential drug candidate in the therapy of autoimmune diseases.
    Toxicon 02/2011; 57(2):348-55. DOI:10.1016/j.toxicon.2010.12.015 · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Voltage-gated potassium channel toxins (KTxs) are basic short chain peptides comprising 23-43 amino acid residues that can be cross-linked by 3 or 4 disulfide bridges. KTxs are classified into four large families: α-, β-, γ- and κ-KTx. These peptides display varying selectivity and affinity for K(v) channel subtypes. In this work, a novel toxin from the Tityus serrulatus venom was isolated, characterized and submitted to a wide electrophysiological screening on 5 different subtypes of Na(V) channels (Na(V)1.4; Na(V)1.5; Na(V)1.6; Na(V)1.8 and DmNa(V)1) and 12 different subtypes of K(V) channels (K(V)1.1 - K(V)1.6; K(V)2.1; K(V)3.1; K(V)4.2; K(V)4.3; Shaker IR and ERG). This novel peptide, named Ts15, has 36 amino acids, is cross-linked by 3 disulfide bridges, has a molecular mass of 3956 Da and pI around 9. Electrophysiological experiments using patch clamp and the two-electrode voltage clamp techniques show that Ts15 preferentially blocks K(V)1.2 and K(V)1.3 channels with an IC₅₀ value of 196 ± 25 and 508 ± 67 nM, respectively. No effect on Na(V) channels was observed, at all tested concentrations. Since Ts15 shows low amino acid identity with other known KTxs, it was considered a bona fide novel type of scorpion toxin. Ts15 is the unique member of the new α-Ktx21 subfamily and therefore was classified as α-Ktx21.1.
    Toxicon 07/2011; 58(1):54-61. DOI:10.1016/j.toxicon.2011.05.001 · 2.58 Impact Factor