Article

Mesenchymal stem cells for treatment and prevention of graft-versus-host disease after allogeneic hematopoietic cell transplantation.

Blood and Marrow Transplantation Program, Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA.
Current Stem Cell Research & Therapy (Impact Factor: 2.96). 01/2010; 4(4):252-9. DOI: 10.2174/157488809789649269
Source: PubMed

ABSTRACT Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective therapy for hematological malignancies and inherited diseases. However, acute graft-versus-host-disease (aGVHD) is a major life-threatening complication after allo-HCT and there are few therapeutic options for severe steroid-refractory aGVHD. Preliminary studies on co-transplantation of mesenchymal stem cells (MSCs) have shown an improvement in or resolution of severe aGVHD. However, the mechanism underlying this immunosuppressive effect has not been elucidated. Most of the data suggest that the immunosuppressive effect involves soluble factors such as IL-6 or TGF-beta as well as cell-cell contact dependence. MSCs interact either directly with T cells or indirectly via other immune cells such as dendritic cells and NK cells. Here we review the immunomodulatory function of MSCs in allo-HCT and their potential usefulness in the treatment or prevention of severe acute GVHD.

1 Bookmark
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Graft-versus-host disease (GVHD) is a major obstacle to successful allogeneic bone marrow transplantation (allo-BMT). While multipotent mesenchymal stromal cells (MSCs) demonstrate alloresponse in vitro and in vivo, they also have clinical applications toward prevention or treatment of GVHD. The aim of this study was to investigate the ability of MSCs to prevent or treat GVHD in a rat BMT model. Materials and Methods: The GVHD model was established by transplantation of Sprague Dawley rats' bone marrow and spleen cells into lethally irradiated (950 cGy) SDxWistar rat recipients. A total of 49 rats were randomly assigned to 4 study and 3 control groups administered different GVHD prophylactic regimens including MSCs. After transplantation, clinical GVHD scores and survival status were monitored. Results: All irradiated and untreated control mice with GVHD died. MSCs inhibited lethal GVHD as efficiently as the standard GVHD prophylactic regimen. The gross and histopathological findings of GVHD and the ratio of CD4/CD8 expression decreased. The subgroup given MSCs displayed higher in vivo proportions of CD25+ T cells and plasma interleukin-2 levels as compared to conventional GVHD treatment after allo-BMT. Conclusion: Our results suggest that clinical use of MSCs in both prophylaxis against and treatment of established GVHD is effective. This study supports the use of MSCs in the prophylaxis and treatment of GVHD after allo-BMT; however, large scale studies are needed. Conflict of interest:None declared.
    Turkish Journal of Haematology 09/2013; 30(3):256-62. · 0.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The field of regenerative medicine and tissue engineering is an ever evolving field that holds promise in treating numerous musculoskeletal diseases and injuries. An important impetus in the development of the field was the discovery and implementation of stem cells. The utilization of mesenchymal stem cells, and later embryonic and induced pluripotent stem cells opens new arenas for tissue engineering and presents the potential of developing stem cell-based therapies for disease treatment. Multipotent and pluripotent stem cells can produce various lineage tissues, and allow for derivation of a tissue that may be comprised of multiple cells types. As the field grows, the combination of biomaterial scaffolds and bioreactors provides methods to create an environment for stem cells that better represent their microenvironment for new tissue formation. As technologies for fabrication of biomaterial scaffolds advance, the ability of scaffolds to modulate stem cell behavior advances as well. The composition of scaffolds could be of natural or synthetic materials and could be tailored to enhance cell self-renewal and/or direct cell fates. In addition to biomaterial scaffolds, studies of tissue development and cellular microenvironments have determined other factors, such as growth factors and oxygen tension that are crucial to the regulation of stem cell activity. The overarching goal of stem cell-based tissue engineering research is to precisely control differentiation of stem cells in culture. In this article we review current developments of tissue engineering, focusing on several stem cell sources, induction factors including growth factors, oxygen tension, biomaterials, and mechanical stimulation, and the internal and external regulatory mechanisms that govern proliferation and differentiation.
    Current pharmaceutical design 02/2013; · 4.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stromal cells (MSC) are fibroblast-like cells present in different types of tissues. Their immunomodulatory potential represents a promising method for post-transplant immunotherapy in the treatment of GVHD (graft-versus-host disease) with suboptimal response to standard immunosuppression. In this study we tested influence of 1–8 month-long cryopreservation on ability of MSC to suppress activation of non-specifically stimulated lymphocytes. We did not observe any changes in proliferation capacity of MSC after thawing. Lymphocytes metabolic activity was inhibited by 30% and number of dividing cells was three times smaller in the presence of MSC. Two activation markers were studied (CD25 and CD69) to confirm preservation of functional cell integrity. Expression of CD25 antigen on CD3+CD4+ and CD3+CD4− cells was decreased in all co-cultivated samples. Level of CD69 expression on CD3+CD4+ cells was lower in samples with added MSC (10–15% on day +2) but without reaching statistical significance. The lower expression (approximately 5%) was observed also on CD4-cells. The study confirms the preservation of immunomodulatory properties of cryopreserved and re-expanded MSC. Aliquots with cryopreserved cells can represent an optimal source for a quick preparation of MSC cell product with the possibility to apply the same cells repeatedly.
    Biologicals 01/2014; · 1.62 Impact Factor

Full-text (2 Sources)

View
48 Downloads
Available from
May 16, 2014