DLX5 (Distal-less Homeobox 5) Promotes Tumor Cell Proliferation by Transcriptionally Regulating MYC

Cancer Signaling and Genetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 07/2009; 284(31):20593-601. DOI: 10.1074/jbc.M109.021477
Source: PubMed

ABSTRACT The human DLX homeobox genes, which are related to Dll (Drosophila distal-less gene), encode transcription factors that are expressed primarily in embryonic development. Recently, DLX5 was reported to act as an oncogene in lymphomas and lung cancers, although the mechanism is not known. The identification of target genes of DLX5 can facilitate our understanding of oncogenic mechanisms driven by overexpression of DLX5. The MYC oncogene is aberrantly expressed in many human cancers and regulates transcription of numerous target genes involved in tumorigenesis. Here we demonstrate by luciferase assay that the MYC promoter is specifically activated by overexpression of DLX5 and that two DLX5 binding sites in the MYC promoter are important for transcriptional activation of MYC. We also show that DLX5 binds to the MYC promoter both in vitro and in vivo and that transfection of a DLX5 expression plasmid promotes the expression of MYC in a dose-dependent manner in mammalian cells. Furthermore, overexpression of DLX5 results in increased cell proliferation by up-regulating MYC. Knockdown of DLX5 in lung cancer cells overexpressing DLX5 resulted in decreased expression of MYC and reduced cell proliferation, which was rescued by overexpression of MYC. Because DLX5 has a restricted pattern of expression in adult tissues, it may serve as a potential therapeutic target for the treatment of cancers that overexpress DLX5.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Homeobox genes comprise a super-family of evolutionarily conserved genes that play essential roles in controlling body plan specification and cell fate determination. Substantial evidence indicates that leukemogenesis is driven by abnormal expression of homeobox genes that control hematopoiesis. In solid tumors, aberrant expression of homeobox genes has been increasingly found to modulate diverse processes such as cell proliferation, cell death, metastasis, angiogenesis and DNA repair. This review discusses how homeobox genes are deregulated in solid tumors and the functional significance of this deregulation in the hallmarks of cancer.
    09/2013; 1(2-3):67-76. DOI:10.1166/ch.2013.1007
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The DLX4 is a homeobox gene strongly implicated in breast tumor progression and invasion. Our main objective was to determine the DLX4 copy number status in sentinel lymph node (SLN) metastasis to assess its involvement in the initial stages of the axillary metastatic process. Thirty-seven paired samples of SLN metastasis and primary breast tumors (PBT) were evaluated by FISH, Taqman and array-CGH assays. DLX4 increased copy number was observed in 21.6% of the PBT and 24.3% of the SLN metastasis; regression analysis demonstrated that the DLX4 alterations observed in the SLN metastasis were dependent on the ones in the PBT, indicating that they occur in the primary tumor cell populations and are maintained in the early axillary metastatic site. In addition, regression analysis demonstrated that DLX4 alterations (and other DLX and HOXB family members) occurred independently of the ones in the HER2/NEU gene, the main amplification driver on the 17q region. Additional studies evaluating DLX4 copy number in non-SLN axillary lymph nodes and/or distant breast cancer metastasis are necessary in order to determine if these alterations are carried on and maintained during more advanced stages of tumor progression and if could be used as a predictive marker for axillary involvement.
    Cancer Genetics 05/2014; 207(5). DOI:10.1016/j.cancergen.2014.04.007 · 2.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Split-hand/foot malformation (SHFM) is a congenital limb deformity due to the absence or dysplasia of central rays of the autopod. Six SHFM loci have already been identified. Here we describe a Chinese family with autosomal-dominant SHFM1 that has previously been mapped to 7q21.2-21.3. The two affected family members, mother and son, showed deep median clefts between toes, ectrodactyly and syndactyly; the mother also showed triphalangeal thumbs. Exome sequencing and variant screening of candidate genes in the six loci known to be responsible for SHFM revealed a novel heterozygous mutation, c.558G>T (p.(Gln186His)), in distal-less homeobox 5 (DLX5). As DLX5 encodes a transcription factor capable of transactivating MYC, we also tested whether the mutation could affect DLX5 transcription acitivity. Results from luciferase reporter assay revealed that a mutation in DLX5 compromised its transcriptional activity. This is the first report of a mutation in DLX5 leading to autosomal-dominant SHFM1.European Journal of Human Genetics advance online publication, 5 February 2014; doi:10.1038/ejhg.2014.7.
    European journal of human genetics: EJHG 02/2014; DOI:10.1038/ejhg.2014.7 · 4.23 Impact Factor