Chlamydia trachomatis native major outer membrane protein induces partial protection in nonhuman primates: implication for a trachoma transmission-blocking vaccine.

Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
The Journal of Immunology (Impact Factor: 5.36). 07/2009; 182(12):8063-70. DOI: 10.4049/jimmunol.0804375
Source: PubMed

ABSTRACT A vaccine is likely the most effective strategy for controlling human chlamydial infections. Recent studies have shown immunization with Chlamydia muridarum major outer membrane protein (MOMP) can induce significant protection against infection and disease in mice if its native trimeric structure is preserved (nMOMP). The objective of this study was to investigate the immunogenicity and vaccine efficacy of Chlamydia trachomatis nMOMP in a nonhuman primate trachoma model. Cynomolgus monkeys (Macaca fascicularis) were immunized systemically with nMOMP, and monkeys were challenged ocularly. Immunization induced high serum IgG and IgA ELISA Ab titers, with Abs displaying high strain-specific neutralizing activity. The PBMCs of immunized monkeys produced a broadly cross-reactive, Ag-specific IFN-gamma response equivalent to that induced by experimental infection. Immunized monkeys exhibited a significant decrease in infectious burden during the early peak shedding periods (days 3-14). However, at later time points, they exhibited no difference from control animals in either burden or duration of infection. Immunization had no effect on the progression of ocular disease. These results show that systemically administered nMOMP is highly immunogenic in nonhuman primates and elicits partially protective immunity against ocular chlamydial challenge. This is the first time a subunit vaccine has shown a significant reduction in ocular shedding in nonhuman primates. A partially protective vaccine, particularly one that reduces infectious burden after primary infection of children, could interrupt the natural trachoma reinfection cycle. This would have a beneficial effect on the transmission between children and sensitized adults which drives blinding inflammatory disease.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The cervix and/or fallopian tubes of pigtailed macaques were experimentally infected with Chlamydia trachomatis. Their sera were collected at varying time points and screened for identification of immunodominant antigens using a whole-genome protein microarray. The effect of doxycycline treatment on the antibody response generated in these macaques was also investigated. Twenty-five female macaques were infected with C. trachomatis serovars D or E in the cervix and/or fallopian tubes. Bloods were collected at baseline and at various intervals after challenge. Serum samples were tested for antibodies using a C. trachomatis serovar D protein microarray. Twenty chlamydial antigens reacted with sera from at least 68% (17/25) of the macaques. In addition to some well-known chlamydial antigens, nine different proteins, not previously recognized as immunodominant, including four hypothetical proteins (CT005, CT066, CT360 and CT578), were identified. Monkeys infected in the fallopian tubes developed a more robust antibody response than animals inoculated in the cervix. Treatment with doxycycline significantly decreased Chlamydia-specific antibody levels. In summary, using protein microarray serum samples from experimentally infected pigtailed macaques were screened for immunodominant chlamydial antigens. These antigens can now be tested in animal models for their ability to protect and as markers of disease progression.
    Journal of Proteomics 05/2014; · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An efficacious vaccine is needed to control Chlamydia trachomatis infection. In the murine model of Chlamydia muridarum genital infection, multifunctional mucosal CD4T cells are the foundation for protective immunity, with antibody playing a secondary role. We previously identified four Chlamydia outer membrane proteins (PmpE, PmpF, PmpG and PmpH) as CD4T cell vaccine candidates using a dendritic cell-based immunoproteomic approach. We also demonstrated that these four polymorphic membrane proteins (Pmps) individually conferred protection as measured by accelerated clearance of Chlamydia infection in the C57BL/6 murine genital tract model. The major outer membrane protein, MOMP is also a well-studied protective vaccine antigen in this system. In the current study, we tested immunogenicity and protection of a multisubunit recombinant protein vaccine consisting of the four Pmps (PmpEFGH) with or without the major outer membrane protein (MOMP) formulated with a Th1 polarizing adjuvant in C57BL/6, Balb/c and C3H mice. We found that C57BL/6 mice vaccinated with PmpEFGH+MOMP elicited more robust cellular immune responses than mice immunized with individual protein antigens. Pmps elicited more variable cellular immune responses than MOMP among the three strains of mice. The combination vaccine accelerated clearance in the three strains of mice although at different rates. We conclude that the recombinant outer membrane protein combination constitutes a promising first generation Chlamydia vaccine construct that should provide broad immunogenicity in an outbred population.
    Vaccine 06/2014; · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is a need to implement a vaccine to protect against Chlamydia trachomatis infections. To test a new vaccine, mice were immunized with the Chlamydia muridarum native major outer membrane protein (nMOMP) solubilized with either amphipol A8-35 or the detergent Z3-14. OVA was used as a negative control, and mice were inoculated intranasally with C. muridarum as positive controls. Animals vaccinated with nMOMP mounted strong Chlamydia-specific humoral and cell-mediated immune responses. Mice vaccinated with nMOMP/A8-35 had a higher ratio of Abs to denatured elementary bodies (EB) over live EB, recognized more synthetic MOMP peptides and had higher neutralizing titers than sera from mice immunized with nMOMP/Z3-14. T cell lymphoproliferative responses and levels of IFN-γ were also higher in mice vaccinated with nMOMP/A8-35 than with nMOMP/Z3-14. Following immunization, animals were challenged intravaginally with C. muridarum. On the basis of the number of mice with positive vaginal cultures, length of vaginal shedding, total number of positive vaginal cultures, and number of Chlamydia inclusion forming units recovered, nMOMP/A8-35 elicited a more robust protection than nMOMP/Z3-14. By depleting T cells with Abs, we determined that CD4(+) and not CD8(+) T cells mediated the protection elicited by nMOMP/A8-35. Mice were subsequently mated, and based on the number of pregnant mice and number of embryos, animals that were vaccinated with nMOMP/A8-35 or nMOMP/Z3-14 had fertility rates equivalent to the positive control group immunized with live EB and the fertility controls. In conclusion, increased accessibility of epitopes in the nMOMP/A8-35 preparation may account for the very robust protection against infection and disease elicited by this vaccine.
    The Journal of Immunology 04/2014; · 5.36 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014