Two MHC class I molecules associated with elite control of immunodeficiency virus replication, Mamu-B*08 and HLA-B*2705, bind peptides with sequence similarity.

Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA.
The Journal of Immunology (Impact Factor: 5.52). 06/2009; 182(12):7763-75. DOI: 10.4049/jimmunol.0900111
Source: PubMed

ABSTRACT HLA-B27- and -B57-positive HIV-infected humans have long been associated with control of HIV replication, implying that CD8(+) T cell responses contribute to control of viral replication. In a similar fashion, 50% of Mamu-B*08-positive Indian rhesus macaques control SIVmac239 replication and become elite controllers with chronic-phase viremia <1000 viral RNA copies/ml. Interestingly, Mamu-B*08-restricted SIV-derived epitopes appeared to match the peptide binding profile for HLA-B*2705 in humans. We therefore defined a detailed peptide-binding motif for Mamu-B*08 and investigated binding similarities between the macaque and human MHC class I molecules. Analysis of a panel of approximately 900 peptides revealed that despite substantial sequence differences between Mamu-B*08 and HLA-B*2705, the peptide-binding repertoires of these two MHC class I molecules share a remarkable degree of overlap. Detailed knowledge of the Mamu-B*08 peptide-binding motif enabled us to identify six additional novel Mamu-B*08-restricted SIV-specific CD8(+) T cell immune responses directed against epitopes in Gag, Vpr, and Env. All 13 Mamu-B*08-restricted epitopes contain an R at the position 2 primary anchor and 10 also possess either R or K at the N terminus. Such dibasic peptides are less prone to cellular degradation. This work highlights the relevance of the Mamu-B*08-positive SIV-infected Indian rhesus macaque as a model to examine elite control of immunodeficiency virus replication. The remarkable similarity of the peptide-binding motifs and repertoires for Mamu-B*08 and HLA-B*2705 suggests that the nature of the peptide bound by the MHC class I molecule may play an important role in control of immunodeficiency virus replication.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Mamu-A genes of the rhesus macaque show different degrees of polymorphism, transcription level variation, and differential haplotype distribution. Per haplotype, usually one "major" transcribed gene is present, A1 (A7), in various combinations with "minor" genes, A2 to A6. In silico analysis of the physical map of a heterozygous animal revealed the presence of similar Mamu-A regions consisting of four duplication units, but with dissimilar positions of the A1 genes on both haplotypes, and in combination with different minor genes. Two microsatellites, D6S2854 and D6S2859, have been selected as potential tools to characterize this complex region. Subsequent analysis of a large breeding colony resulted in the description of highly discriminative patterns, displaying copy number variation in concert with microsatellite repeat length differences. Sequencing and segregation analyses revealed that these patterns are unique for each Mamu-A haplotype. In animals of Indian, Burmese, and Chinese origin, 19, 15, or 9 haplotypes, respectively, could be defined, illustrating the occurrence of differential block duplications and subsequent rearrangements by recombination. The haplotypes can be assigned to 12 unique combinations of genes (region configurations). Although most configurations harbor two transcribed A genes, one or three genes per haplotype are also present. Additionally, haplotypes lacking an A1 gene or with an A1 duplication appear to exist. The presence of different transcribed A genes/alleles in monkeys from various origins may have an impact on differential disease susceptibilities. The high-throughput microsatellite technique will be a valuable tool in animal selection for diverse biomedical research projects.
    Immunogenetics 02/2011; 63(2):73-83. · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pre-exposure prophylaxis (PrEP) with anti-viral drugs is currently in clinical trials for the prevention of HIV infection. Induction of adaptive immune responses to virus exposures during anti-viral drug administration, i.e., a "chemo-vaccination" effect, could contribute to PrEP efficacy. To study possible chemo-vaccination, we monitored humoral and cellular immune responses in nine rhesus macaques undergoing up to 14 weekly, low-dose SHIV(SF162P3) rectal exposures. Six macaques concurrently received PrEP with intermittent, oral Truvada; three were no-PrEP controls. PrEP protected 4 macaques from infection. Two of the four showed evidence of chemo-vaccination, because they developed anti-SHIV CD4(+) and CD8(+) T cells; SHIV-specific antibodies were not detected. Control macaques showed no anti-SHIV immune responses before infection. Chemo-vaccination-induced T cell responses were robust (up to 3,940 SFU/10(6) PBMCs), predominantly central memory cells, short-lived (≤22 weeks), and appeared intermittently and with changing specificities. The two chemo-vaccinated macaques were virus-challenged again after 28 weeks of rest, after T cell responses had waned. One macaque was not protected from infection. The other macaque concurrently received additional PrEP. It remained uninfected and T cell responses were boosted during the additional virus exposures. In summary, we document and characterize PrEP-induced T cell chemo-vaccination. Although not protective after subsiding in one macaque, chemo-vaccination-induced T cells warrant more comprehensive analysis during peak responses for their ability to prevent or to control infections after additional exposures. Our findings highlight the importance of monitoring these responses in clinical PrEP trials and suggest that a combination of vaccines and PrEP potentially might enhance efficacy.
    PLoS ONE 01/2011; 6(4):e19295. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pig-tailed macaques (Macaca nemestrina) are a commonly studied primate model of human AIDS. The Mane-A1*084:01 MHC class I allele (previously named Mane-A*10) is important for the control of SIV infection by CD8+ T cells in this model. Validated methods to detect this allele in large numbers of macaques are lacking. We studied this MHC allele using sequence-specific PCRs in 217 pig-tailed macaques and identified 75 (35%) positive animals. We then performed massively parallel pyrosequencing with a universal 568-bp MHC class I cDNA-PCR amplicon for 50 of these 75 macaques. All 50 animals expressed Mane-A1*084:01 or closely related variants of the Mane-A1*084 lineage. Mane-A1*084 transcripts accounted for an average of 20.9% of all class I sequences identified per animal. SIV infection of a subset of these macaques resulted in the induction of SIV-specific CD8+ T cell responses detected by Mane-A1*084:01 tetramers. An average of 19 distinct class I transcripts were identified per animal by pyrosequencing. This analysis revealed 89 new Mane class I sequences as well as 32 previously described sequences that were extended with the longer amplicons employed in the current study. In addition, multiple Mane class I haplotypes that had been inferred previously based on shared transcript profiles between unrelated animals were confirmed for a subset of animals where pedigree information was available. We conclude that sequence-specific PCR is useful to screen pig-tailed macaques for Mane-A1*084:01, although pyrosequencing permits a much broader identification of the repertoire of MHC class I sequences and haplotypes expressed by individual animals. KeywordsPig-tailed macaques–MHC class I–Pyrosequencing–CD8+ T cell– Mane-A1*084:01 –Cytotoxic T lymphocyte (CTL)
    Immunogenetics 01/2011; 63(8):511-521. · 2.89 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014