Two MHC Class I Molecules Associated with Elite Control of Immunodeficiency Virus Replication, Mamu-B*08 and HLA-B*2705, Bind Peptides with Sequence Similarity

Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA.
The Journal of Immunology (Impact Factor: 5.36). 06/2009; 182(12):7763-75. DOI: 10.4049/jimmunol.0900111
Source: PubMed

ABSTRACT HLA-B27- and -B57-positive HIV-infected humans have long been associated with control of HIV replication, implying that CD8(+) T cell responses contribute to control of viral replication. In a similar fashion, 50% of Mamu-B*08-positive Indian rhesus macaques control SIVmac239 replication and become elite controllers with chronic-phase viremia <1000 viral RNA copies/ml. Interestingly, Mamu-B*08-restricted SIV-derived epitopes appeared to match the peptide binding profile for HLA-B*2705 in humans. We therefore defined a detailed peptide-binding motif for Mamu-B*08 and investigated binding similarities between the macaque and human MHC class I molecules. Analysis of a panel of approximately 900 peptides revealed that despite substantial sequence differences between Mamu-B*08 and HLA-B*2705, the peptide-binding repertoires of these two MHC class I molecules share a remarkable degree of overlap. Detailed knowledge of the Mamu-B*08 peptide-binding motif enabled us to identify six additional novel Mamu-B*08-restricted SIV-specific CD8(+) T cell immune responses directed against epitopes in Gag, Vpr, and Env. All 13 Mamu-B*08-restricted epitopes contain an R at the position 2 primary anchor and 10 also possess either R or K at the N terminus. Such dibasic peptides are less prone to cellular degradation. This work highlights the relevance of the Mamu-B*08-positive SIV-infected Indian rhesus macaque as a model to examine elite control of immunodeficiency virus replication. The remarkable similarity of the peptide-binding motifs and repertoires for Mamu-B*08 and HLA-B*2705 suggests that the nature of the peptide bound by the MHC class I molecule may play an important role in control of immunodeficiency virus replication.

Download full-text


Available from: Dominic R Beal, Jun 27, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The SIV-infected rhesus macaque (Macaca mulatta) is the most established model of AIDS disease systems, providing insight into pathogenesis and a model system for testing novel vaccines. The understanding of cellular immune responses based on the identification and study of Major Histocompatibility Complex (MHC) molecules, including their MHC:peptide-binding motif, provides valuable information to decipher outcomes of infection and vaccine efficacy. Detailed characterization of Mamu-B*039:01, a common allele expressed in Chinese rhesus macaques, revealed a unique MHC:peptide-binding preference consisting of glycine at the second position. Peptides containing a glycine at the second position were shown to be antigenic from animals positive for Mamu-B*039:01. A similar motif was previously described for the D(d) mouse MHC allele, but for none of the human HLA molecules for which a motif is known. Further investigation showed that one additional macaque allele, present in Indian rhesus macaques, Mamu-B*052:01, shares this same motif. These "G2" alleles were associated with the presence of specific residues in their B pocket. This pocket structure was found in 6% of macaque sequences but none of 950 human HLA class I alleles. Evolutionary studies using the "G2" alleles points to common ancestry for the macaque sequences, while convergent evolution is suggested when murine and macaque sequences are considered. This is the first detailed characterization of the pocket residues yielding this specific motif in nonhuman primates and mice, revealing a new supertype motif not present in humans.
    Immunogenetics 02/2012; 64(6):421-34. DOI:10.1007/s00251-011-0598-5 · 2.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Simian immunodeficiency virus (SIV)-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection and AIDS-related research, despite the potential that macaques of Chinese origin is a more relevant model. Ongoing efforts to further characterize the Chinese rhesus macaques’ major histocompatibility complex (MHC) for composition and function should facilitate greater utilization of the species. Previous studies have demonstrated that Chinese-origin M. mulatta (Mamu) class I alleles are more polymorphic than their Indian counterparts, perhaps inferring a model more representative of human MHC, human leukocyte antigen (HLA). Furthermore, the Chinese rhesus macaque class I allele Mamu-A1*02201, the most frequent allele thus far identified, has recently been characterized and shown to be an HLA-B7 supertype analog, the most frequent supertype in human populations. In this study, we have characterized two additional alleles expressed with high frequency in Chinese rhesus macaques, Mamu-A1*02601 and Mamu-B*08301. Upon the development of MHC–peptide-binding assays and definition of their associated motifs, we reveal that these Mamu alleles share peptide-binding characteristics with the HLA-A2 and HLA-A3 supertypes, respectively, the next most frequent human supertypes after HLA-B7. These data suggest that Chinese rhesus macaques may indeed be a more representative model of HLA gene diversity and function as compared to the species of Indian origin and therefore a better model for investigating human immune responses. Electronic supplementary material The online version of this article (doi:10.1007/s00251-010-0502-8) contains supplementary material, which is available to authorized users.
    Immunogenetics 05/2011; 63(5):275-90. DOI:10.1007/s00251-010-0502-8 · 2.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Innate immune mechanisms play a deterministic role in the rate of disease progression during acute infection in HIV infected humans and SIV infection of non-human primates. The role NK cells play in mediating such an effect has thus gained importance. One of the major sets of molecules that regulate NK cell function are the killer cell immunoglobulin-like molecules (KIR's). Our laboratory has previously shown an association of KIR3DL alleles 13 and 14 with high plasma viral loads in a cohort of SIV-infected rhesus macaques. To gain a more detailed understanding of the role of KIR polymorphisms, our laboratory herein conducted studies of three additional KIR loci and show that select KIR3DH alleles appear to be more strongly associated with high plasma viral loads than KIR3DL alleles 13 and 14. In addition, we herein document the existence of additional new alleles for the KIR1D, KIR2DL4, and the KIR3DH loci.
    Cellular Immunology 01/2010; 263(2):176-87. DOI:10.1016/j.cellimm.2010.03.014 · 1.87 Impact Factor