Conference Paper

RetroDepth: 3D Silhouette Sensing for High Precision Input On and Above Physical Surfaces

DOI: 10.1145/2556288.2557336 Conference: SIGCHI Conference on Human Factors in Computing Systems


We present RetroDepth, a new vision-based system for accurately sensing the 3D silhouettes of hands, styluses, and other objects, as they interact on and above physical surfaces. Our setup is simple, cheap, and easily reproducible, comprising of two infrared cameras, diffuse infrared LEDs, and any off-the-shelf retro-reflective material. The retro-reflector aids image segmentation, creating a strong contrast between the surface and any object in proximity. A new highly efficient stereo matching algorithm precisely estimates the 3D contours of interacting objects and the retro-reflective surfaces. A novel pipeline enables 3D finger, hand and object tracking, as well as gesture recognition, purely using these 3D contours. We demonstrate high-precision sensing, allowing robust disambiguation between a finger or stylus touching, pressing or interacting above the surface. This allows many interactive scenarios that seamlessly mix together freehand 3D interactions with touch, pressure and stylus input. As shown, these rich modalities of input are enabled on and above any retro-reflective surface, including custom "physical widgets" fabricated by users. We compare our system with Kinect and Leap Motion, and conclude with limitations and future work.

432 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a novel machine learning based algorithm extending the interaction space around mobile devices. The technique uses only the RGB camera now commonplace on off-the-shelf mobile devices. Our algorithm robustly recognizes a wide range of in-air gestures, supporting user variation, and varying lighting conditions. We demonstrate that our algorithm runs in real-time on unmodified mobile devices, including resource-constrained smartphones and smart watches. Our goal is not to replace the touchscreen as primary input device, but rather to augment and enrich the existing interaction vocabulary using gestures. While touch input works well for many scenarios, we demonstrate numerous interaction tasks such as mode switches, application and task management, menu selection and certain types of navigation, where such input can be either complemented or better served by in air gestures. This removes screen real-estate issues on small touchscreens, and allows input to be expanded to the 3D space around the device. We present results for recognition accuracy (93% test and 98% train), impact of memory footprint and other model parameters. Finally, we report results from preliminary user evaluations, discuss advantages and limitations and conclude with directions for future work.
    UIST; 10/2014