Article

Nicotine affects the expression of brain-derived neurotrophic factor mRNA and protein in the hippocampus of hypoxic newborn piglets

Department of Pediatric Research, Institute of Surgical Research, Medical Faculty, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway.
Journal of Perinatal Medicine (Impact Factor: 1.43). 07/2009; 37(5):553-60. DOI: 10.1515/JPM.2009.081
Source: PubMed

ABSTRACT Brain-derived neurotrophic factor (BDNF) is highly expressed in the developing brain. It has anti-apoptotic abilities, and protects the neonatal brain. In experimental settings in adult animals, pre-treatment with nicotine has shown increased BDNF levels, indicating a possible contribution to nicotine's anti-apoptotic effect. Apoptosis contributes to the development of brain damage in perinatal asphyxia. We examined the effects of nicotine on apoptosis-inducing factor (AIF), caspase-3 and BDNF in the hippocampus of a neonatal piglet model of global hypoxia. Forty-one anesthetized newborn piglets were randomized to one of four groups receiving different infusions after hypoxia (1) nicotine 130 microg/kg/h, 2) 260 microg/kg/h, 3) adrenaline, and 4) saline, all 2.6 mL/kg/h. Four hours after hypoxia they were euthanized. The left hemisphere/hippocampus was examined by histopathology and immunohistochemistry; the right hippocampus was analyzed using real time PCR. There was a significantly higher expression of BDNF mRNA and protein in the animals treated with nicotine 130 microg/kg/h vs. the saline treated group (mRNA P=0.038; protein P=0.009). There were no differences regarding AIF or caspase-3. We conclude that nicotine (130 microg/kg/h), infused over 1 h after global hypoxia in neonatal piglets, increases levels of both BDNF mRNA and protein in the hippocampus. This might imply neuroprotective effects of nicotine in asphyxiated neonates.

Full-text

Available from: Babill Stray-Pedersen, May 23, 2015
0 Followers
 · 
62 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Important reduction of reelin, a neural development- and plasticity-associated protein, and glutamic acid decarboxylase (GAD67) are reported in brains of schizophrenic patients. These individuals are consistently engaged in tobacco smoking and nicotine is thought to alleviate negative behavioral symptoms or cognitive alterations. In mouse brain, nicotine has been shown to reduce GAD67 promoter methylation and increase its transcription. We assessed the effects of administration of nicotine (1 mg/kg s.c.) for 6 days, in male mice heterozygous for reelin (HRM), a putative model for symptoms related to schizophrenia. Expression of reelin, GAD67 and brain-derived neurotrophic factor (BDNF) was measured in different brain areas. RNA expression analysis evidenced genotype-related changes, with a marked reduction in reelin and GAD67 gene expression in prefrontal cortex, hippocampus, cerebellum, and striatum from HRM. Nicotine treatment selectively reversed the HRM-related phenotype in most brain areas and increased BDNF gene expression in cortex and hippocampus of both genotypes. Locomotor performance in their home cage revealed that HRM subjects were characterized by general hyperactivity; with nicotine administration restoring WT-like levels of locomotion. These findings are interpreted within the hypothesis of pre-existing vulnerability (based on haploinsufficiency of reelin) to brain and behavioral disorders and regulative effects associated with nicotine exposure.
    Neurotoxicity Research 02/2013; 24(2). DOI:10.1007/s12640-013-9378-3 · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the behavioral and molecular interactions between cocaine and nicotine, through evaluating locomotor activity, nicotine intravenous self-administration and gene expression. Locomotor sensitization was induced in male Wistar rats by repeated cocaine (20 mg/Kg; i.p.) or saline injections once a day over 7 days. Three days after the last injection, rats were challenged with either saline or cocaine (15 mg/Kg; i.p.) and the locomotor activity was measured. The very next day animals received either saline or nicotine (0.4 mg/kg; s.c.) and the locomotor cross-sensitization was tested. Animals were then prepared with intrajugular catheters for nicotine self-administration. Nicotine self-administration patterns were evaluated using fixed or progressive ratio schedules of reinforcement and a 24-h unlimited access binge. Immediately after the binge sessions animals were decapitated, the brains were removed and the nucleus accumbens was dissected. The dynorphin (DYN), μ-opioid receptor (mu opioid), neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF), tropomyosin-related tyrosine kinase B receptor (TrkB) and corticotropin-releasing factor receptor type 1 (CRF-R1) gene expression were measured by the reverse transcription-polymerase chain reaction (RT-PCR). Pretreatment with cocaine caused sensitization of cocaine motor response and locomotor cross-sensitization with nicotine. In the self-administration experiments repeated cocaine administration caused an increase in the nicotine break point and nicotine intake during a 24h binge session.
    Pharmacology Biochemistry and Behavior 01/2013; 104. DOI:10.1016/j.pbb.2013.01.007 · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nicotine alters cognitive functions in animals and humans most likely by modification of brain plasticity. In the human brain, it alters plasticity induced by transcranial direct current stimulation (tDCS) and paired associative stimulation (PAS), probably by interference with calcium-dependent modulation of the glutamatergic system. We aimed to test this hypothesis further by exploring the impact of the α4β2-nicotinic receptor partial agonist varenicline on focal and non-focal plasticity, induced by PAS and tDCS, respectively. We administered low (0.1 mg), medium (0.3 mg), and high (1.0 mg) single doses of varenicline or placebo medication before PAS or tDCS on the left motor cortex of 25 healthy non-smokers. Corticospinal excitability was monitored by single-pulse transcranial magnetic stimulation-induced motor evoked potential amplitudes up to 36 h after plasticity induction. Whereas low-dose varenicline had no impact on stimulation-induced neuroplasticity, medium-dose abolished tDCS-induced facilitatory after-effects, favoring focal excitatory plasticity. High-dose application preserved cathodal tDCS-induced excitability diminution and focal excitatory PAS-induced facilitatory plasticity. These results are comparable to the impact of nicotine receptor activation and might help to further explain the involvement of specific receptor subtypes in the nicotinic impact on neuroplasticity and cognitive functions in healthy subjects and patients with neuropsychiatric diseases.
    Cerebral Cortex 06/2014; DOI:10.1093/cercor/bhu126 · 8.31 Impact Factor