Overexpression of Interleukin-13 Receptor-alpha 2 in Neuroendocrine Malignant Pheochromocytoma: A Novel Target for Receptor Directed Anti-Cancer Therapy

Section on Medical Neuroendocrinology, Reproductive and Adult Endocrinology Program, National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1109, USA.
The Journal of Clinical Endocrinology and Metabolism (Impact Factor: 6.31). 06/2009; 94(8):2952-7. DOI: 10.1210/jc.2009-0309
Source: PubMed

ABSTRACT Pheochromocytomas and paragangliomas are rare catecholamine-secreting neuroendocrine tumors arising from the adrenal medulla and sympathetic tissues. When complete surgical resection is not an option, the treatment of pheochromocytoma is limited.
The objective of the study was to identify and characterize overexpression of IL-13 receptor-alpha2 (IL-13Ralpha2) gene expression in human and murine tumors and verify xenograft mouse pheochromocytoma cell (MPC)-derived tumor's response to a selective cytotoxin.
Expression of IL-13Ralpha2 was evaluated in a panel of 25 human pheochromocytoma clinical samples by RT-PCR and eight MPC tumors by indirect immunofluorescence assay and RT-PCR. Intervention: The function of IL-13Ralpha2 in these tumor cells was examined by evaluating tumor sensitivity to a recombinant IL-13-Pseudomonas exotoxin (IL-13PE). Subcutaneous small and large MPC tumors in athymic nude mice (n = 10) were treated intratumorally with IL-13PE (100 m icrog/kg).
IC(50) and tumor size were measured.
IL-13PE immunotoxin was highly cytotoxic to IL-13Ralpha2-overexpressing MPC cells (IC(50) <2.5 ng/ml) in vitro. Furthermore, IL-13PE was highly cytotoxic to sc tumors. Our results showed a statistically significant decrease in tumor size as early as 3 d after initial treatment and further suppressed growth of MPC tumors. All tumors displayed a histological evidence of necrosis in response to IL-13 immunotoxin without any adverse effects in host at this dose.
Human and murine neuroendocrine pheochromocytoma overexpress the IL-13Ralpha2 chain, and an IL-13PE-based receptor-directed anticancer approach may prove useful in treatment for metastatic pheochromocytoma patients.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To date, malignant pheochromocytomas and paragangliomas (PHEOs/PGLs) cannot be effectively cured and thus novel treatment strategies are urgently needed. Lovastatin has been shown to effectively induce apoptosis in mouse PHEO cells (MPC) and the more aggressive mouse tumor tissue-derived cells (MTT), which was accompanied by decreased phosphorylation of mitogen-activated kinase (MAPK) pathway players. The MAPK pathway plays a role in numerous aggressive tumors and has been associated with a subgroup of PHEOs/PGLs, including K-RAS-, RET-, and NF1-mutated tumors. Our aim was to establish whether MAPK signaling may also play a role in aggressive, succinate dehydrogenase (SDH) B mutation-derived PHEOs/PGLs. Expression profiling and western blot analysis indicated that specific aspects of MAPK-signaling are active in SDHB PHEOs/PGLs, suggesting that inhibition by statin treatment could be beneficial. Moreover, we aimed to assess whether the anti-proliferative effect of lovastatin on MPC and MTT differed from that exerted by fluvastatin, simvastatin, atorvastatin, pravastatin, or rosuvastatin. Simvastatin and fluvastatin decreased cell proliferation most effectively and the more aggressive MTT cells appeared more sensitive in this respect. Inhibition of MAPK1 and 3 phosphorylation following treatment with fluvastatin, simvastatin, and lovastatin was confirmed by western blot. Increased levels of CASP-3 and PARP cleavage confirmed induction of apoptosis following the treatment. At a concentration low enough not to affect cell proliferation, spontaneous migration of MPC and MTT was significantly inhibited within 24 hours of treatment. In conclusion, lipophilic statins may present a promising therapeutic option for treatment of aggressive human paragangliomas by inducing apoptosis and inhibiting tumor spread.
    PLoS ONE 03/2014; 9(5):e97712. DOI:10.1371/journal.pone.0097712 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A glycolytic profile unifies a group of pheochromocytomas and paragangliomas (PHEOs/PGLs) with distinct underlying gene defects, including von Hippel-Lindau (VHL) and succinate dehydrogenase B (SDHB) mutations. Nevertheless, their tumor aggressiveness is distinct: PHEOs/PGLs metastasize rarely in VHL-, but frequently in SDHB-patients. To date, the molecular mechanisms causing the more aggressive phenotype in SDHB-PHEOs/PGLs remain largely unknown. Recently, however, an excellent model to study aggressive PHEOs (mouse tumor tissue (MTT) cells) has been developed from mouse PHEO cells (MPC). We employed this model for a proteomics based approach to identify changes characteristic for tumor aggressiveness, which we then explored in a homogeneous set of human SDHB- and VHL-PHEOs/PGLs. The increase of glucose transporter 1 in VHL, and of hexokinase 2 in VHL and SDHB, confirmed their glycolytic profile. In agreement with the cell model and in support of decoupling of glycolysis, the Krebs cycle and oxidative phosphorylation (OXPHOS), SDHB tumors showed increased lactate dehydrogenase levels. In SDHB-PGLs OXPHOS complex activity was increased at complex III and, as expected, decreased at complex II. Moreover, protein and mRNA expression of all tested OXPHOS-related genes were higher in SDHB- than in VHL-derived tumors. Although there was no direct evidence for increased reactive oxygen species production, elevated superoxide dismutase 2 expression may reflect elevated oxidative stress in SDHB-derived PHEOs/PGLs. For the first time, we show that despite dysfunction in complex II and evidence for a glycolytic phenotype, the Warburg effect does not seem to fully apply to SDHB-PHEOs/PGLs with respect to decreased OXPHOS. In addition, we present evidence for increased LDHA and SOD2 expression in SDHB-PHEOs/PGLs, proteins that have been proposed as promising therapeutic targets in other cancers. This study provides new insight into pathogenic mechanisms in aggressive human PHEOs/PGLs, which may lead to identifying new diagnostic and prognostic markers in the near future.
    PLoS ONE 07/2012; 7(7):e40949. DOI:10.1371/journal.pone.0040949 · 3.53 Impact Factor
  • Source
    Progress in Neurobiology 04/2011; 93(4):549. DOI:10.1016/j.pneurobio.2011.02.001 · 10.30 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014