In vivo visualization of transplanted pancreatic islets by MRI: comparison between in vivo, histological and electron microscopy findings.

Department of Morphological and Biomedical Sciences, University of Verona, Strada Le Grazie 8, Verona, Italy.
Contrast Media & Molecular Imaging (Impact Factor: 2.87). 06/2009; 4(3):135-42. DOI: 10.1002/cmmi.274
Source: PubMed

ABSTRACT The aim of the work was to compare in vivo MRI visualization of pancreatic islets labeled with clinical-grade superparamagnetic iron oxide (SPIOs) contrast agents with ex vivo examination of liver tissue in an experimental model of marginal mass transplantation in rats. Seven hundred IEq (Islet Equivalent) from Wistar rats, labeled by incubation with Endorem or Resovist, were transplanted into Sprague-Dawley rats through the portal vein. Liver MR images of recipient rats were acquired at different time points (3-42 days) after transplantation. Animals were sacrificed during this period and their livers were excised and prepared for histology and electron microscopy. Hypointense spots originating from iron particles were observed in MR images. The number of separate spots was counted. Three days after transplantation one spot for every three or four transplanted islets was observed. Seven days after transplantation, histological sections showed the presence of iron within pancreatic islets. The time course of MR images showed a decrease in the number of spots, at 42 days, amounting to 65 and 22% of the initial value, for Resovist and Endorem respectively, while no immunopositive endocrine cells were detected in histological slices. The present work shows that pancreatic islets can be labeled using clinically approved SPIO contrast agents and visualized using in vivo MRI with high sensitivity, consistently with findings in the literature. Differently from reports in the literature, our findings indicate that iron particles could last in the liver for long periods, independently of the presence of intact pancreatic islets.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Labeling of pancreatic islets with superparamagnetic iron oxide (SPIO) nanoparticles enables their post-transplant monitoring by magnetic resonance imaging (MRI). Although the nanoparticles are incorporated into islet cells in culture, little is known about their fate in vivo. We studied the morphology of labeled islets after transplantation, aiming to identify the MRI contrast particles and their relationship to transplantation outcomes. Rat islets labeled with the ferucarbotran were transplanted into the liver or under the kidney capsule of syngeneic and allogeneic rats. After in vivo MRI, morphology was studied by light, fluorescence and transmission electron microscopy. Morphology of syngeneic islets transplanted beneath the kidney capsule vs into the liver was similar. Iron particles were almost completely eliminated from the endocrine cells and remained located in host-derived macrophages surrounding the vital islets for the entire study period. In the allogeneic model, islets lost their function and were completely rejected within nine days following transplantation in both transplant models. However, intercellular transport of the SPIO particles and subsequent MRI findings was different in the liver and kidney. In the liver, the decreasing number of islet-related MRI spots corresponded with clearance of iron particles in rejected islets; in contrast, with renal transplants extensive iron deposits with a high effect on MRI signal persisted in phagocytic cells beneath the capsule. We conclude that MRI detection of the iron contrast agent correlates with islet survival and function in islet transplantation into the liver, while it does not correlate in the case of transplantation beneath the renal capsule. Copyright © 2012 John Wiley & Sons, Ltd.
    Contrast Media & Molecular Imaging 11/2012; 7(6):485-93. · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To better understand the fate of islet isografts and allografts, we utilized a magnetic resonance (MR) imaging technique to monitor mouse islets labeled with a novel MR contrast agent, chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles. After being incubated with and without CSPIO (10 µg/ml), C57BL/6 mouse islets were examined under transmission electron microscope (TEM) and their insulin secretion was measured. Cytotoxicity was examined in α (αTC1) and β (NIT-1 and βTC) cell lines as well as islets. C57BL/6 mice were used as donors and inbred C57BL/6 and Balb/c mice were used as recipients of islet transplantation. Three hundred islets were transplanted under the left kidney capsule of each mouse and then MR was performed in the recipients periodically. At the end of study, the islet graft was removed for histology and TEM studies. After incubation of mouse islets with CSPIO (10 µg/mL), TEM showed CSPIO in endocytotic vesicles of α- and β-cells at 8 h. Incubation with CSPIO did not affect insulin secretion from islets and death rates of αTC1, NIT-1 and βTC cell lines as well as islets. After syngeneic and allogeneic transplantation, grafts of CSPIO-labeled islets were visualized on MR scans as persistent hypointense areas. At 8 weeks after syngeneic transplantation and 31 days after allogeneic transplantation, histology of CSPIO-labeled islet grafts showed colocalized insulin and iron staining in the same areas but the size of allografts decreased with time. TEM with elementary iron mapping demonstrated CSPIO distributed in the cytoplasm of islet cells, which maintained intact ultrastructure. Our results indicate that after syngeneic and allogeneic transplantation, islets labeled with CSPIO nanoparticles can be effectively and safely imaged by MR.
    PLoS ONE 01/2013; 8(4):e62626. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While islet transplantation is considered a useful therapeutic option for severe diabetes mellitus (DM), the outcome of this treatment remains unsatisfactory. This is largely due to the damage and loss of islets in the early transplant stage. Thus, it is important to monitor the condition of the transplanted islets, so that a treatment can be selected to rescue the islets from damage if needed. Recently, numerous trials have been performed to investigate the efficacy of different imaging modalities for visualizing transplanted islets. Positron emission tomography (PET) and magnetic resonance imaging (MRI) are the most commonly used imaging modalities for this purpose. Some groups, including ours, have also tried to visualize transplanted islets by ultrasonography (US). In this review article, we discuss the recent progress in islet imaging.
    Islets 11/2013; 5(5). · 1.55 Impact Factor