Electron-induced dissociation of protonated peptides yields backbone fragmentation consistent with a hydrogen-deficient radical.

Rapid Communications in Mass Spectrometry (Impact Factor: 2.51). 08/2009; 23(13):2099-101. DOI: 10.1002/rcm.4117
Source: PubMed
  • [Show abstract] [Hide abstract]
    ABSTRACT: Radical-directed dissociation of gas phase ions is emerging as a powerful and complementary alternative to traditional tandem mass spectrometric techniques for biomolecular structural analysis. Previous studies have identified that coupling of 2-[(2,2,6,6-tetramethylpiperidin-1-oxyl)methyl]benzoic acid (TEMPO-Bz) to the N-terminus of a peptide introduces a labile oxygen-carbon bond that can be selectively activated upon collisional activation to produce a radical ion. Here we demonstrate that structurally-defined peptide radical ions can also be generated upon UV laser photodissociation of the same TEMPO-Bz derivatives in a linear ion-trap mass spectrometer. When subjected to further mass spectrometric analyses, the radical ions formed by a single laser pulse undergo identical dissociations as those formed by collisional activation of the same precursor ion, and can thus be used to derive molecular structure. Mapping the initial radical formation process as a function of photon energy by photodissociation action spectroscopy reveals that photoproduct formation is selective but occurs only in modest yield across the wavelength range (300-220 nm), with the photoproduct yield maximised between 235 and 225 nm. Based on the analysis of a set of model compounds, structural modifications to the TEMPO-Bz derivative are suggested to optimise radical photoproduct yield. Future development of such probes offers the advantage of increased sensitivity and selectivity for radical-directed dissociation.
    Physical Chemistry Chemical Physics 01/2014; · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LC ESI FTICR MS of a sample of cediranib identified this pharmaceutical target molecule plus an additional 10 compounds of interest, all of which were less than 10% total ion current (TIC) peak intensity relative to cediranib. LC FTICR tandem mass spectrometry using electron induced dissociation (EID) has been achieved and has proven to be the best way to generate useful product ion information for all of these singly protonated molecules. Cediranib [M + H](+) fragmented by EID to give 29 product ions whereas QTOF-CID generated only one very intense product ion, and linear ion trap-CID, which generated 10 product ions, but all with poor S/N. Twenty-six of the EID product ions were unique to this fragmentation technique alone. By considering the complementary LC-EID and LC-CID data together, all 10 unknown compounds were structurally characterized and proven to be analogous to cediranib. Of particular importance, EID produced unique product ion information for one of the low level cediranib analogues that enabled full characterization of the molecule such that the presence of an extra propylpyrrolidine group was discovered and proven to be located on the pyrrolidine ring of cediranib, solving an analytical problem that could not be solved by collision induced dissociation (CID). Thus, it has been demonstrated that EID is in harmony with the chromatography duty-cycle and the dynamic concentration range of synthetic compounds containing trace impurities, providing crucial analytical information that cannot be obtained by more traditional methodologies.
    Journal of the American Society for Mass Spectrometry 01/2012; 23(5):850-7. · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A variety of peptide sulfinyl radical (RSO•) ions with a well-defined radical site at the cysteine side chain were formed at atmospheric pressure (AP), sampled into a mass spectrometer, and investigated via collision-induced dissociation (CID). The radical ion formation was based on AP reactions between oxidative radicals and peptide ions containing single inter-chain disulfide bond or free thiol group generated from nanoelectrospray ionization (nanoESI). The radical induced reactions allowed large flexibility in forming peptide radical ions independent of ion polarity (protonated or deprotonated) or charge state (singly or multiply charged). More than 20 peptide sulfinyl radical ions in either positive or negative ion mode were subjected to low energy collisional activation on a triple-quadrupole/linear ion trap mass spectrometer. The competition between radical- and charge-directed fragmentation pathways was largely affected by the presence of mobile protons. For peptide sulfinyl radical ions with reduced proton mobility (i.e., singly protonated, containing basic amino acid residues), loss of 62 Da (CH(2)SO), a radical-initiated dissociation channel, was dominant. For systems with mobile protons, this channel was suppressed, while charge-directed amide bond cleavages were preferred. The polarity of charge was found to significantly alter the radical-initiated dissociation channels, which might be related to the difference in stability of the product ions in different ion charge polarities.
    Journal of the American Society for Mass Spectrometry 08/2012; 23(11):2011-9. · 3.59 Impact Factor