Article

Electron-induced dissociation of protonated peptides yields backbone fragmentation consistent with a hydrogen-deficient radical.

Rapid Communications in Mass Spectrometry (Impact Factor: 2.64). 07/2009; 23(13):2099-101. DOI: 10.1002/rcm.4117
Source: PubMed
0 Followers
 · 
186 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The tandem mass spectrometry techniques electron-induced dissociation (EID) and collision-activated dissociation (CAD) have been compared as tools for providing detailed structural information of polyketides. Polyketides are an important class of natural products that account for a significant proportion of the drugs currently in clinical use. Three polyketide natural products, namely erythromycin A, lasalocid A, and iso-lasalocid A, were subjected to both CAD and EID, and their fragment ions were assigned with sub-part-per-million accuracy. The number of fragment ions detected through EID was much greater than for CAD, leading to a greater amount of structural information obtained for each polyketide, albeit with a decreased signal-to-noise ratio. The effect of different bound cations on the fragment pattern of the isomers lasalocid A and iso-lasalocid A was studied, with CAD and EID performed on the [M + H](+), [M + Na](+), [M + Li](+), and [M + NH(4)](+) precursor ions. The lithiated species were found to produce the greatest degree of fragmentation and enabled detailed structural information on the isomers to be obtained. Multistage mass spectrometry (MS(3)) experiments, combining CAD and EID, could also be performed on the lithiated species, generating new fragment information which enables the two isomers to be distinguished. Combining CAD and EID for the structural characterization of polyketides will therefore be a useful tool for identifying and characterizing unknown polyketides and their biosynthetic intermediates.
    Analytical Chemistry 09/2012; 84(20):8863-70. DOI:10.1021/ac3022778 · 5.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dissociation of peptides induced by interaction with (free) electrons (electron-induced dissociation, EID) at electron energies ranging from near 0 to >30 eV was carried out using a radio-frequency-free electromagnetostatic (EMS) cell retrofitted into a triple quadrupole mass spectrometer. The product-ion mass spectra exhibited EID originating from electronically excited even-electron precursor ions, reduced radical cations formed by capture of low-energy electrons, and oxidized radical cations produced by interaction with high-energy electrons. The spectra demonstrate, within the limits of the triple quadrupole's resolving power, that high-energy EID product-ion spectra produced with an EMS cell exhibit essentially the same qualitative structural information, i.e., amino acid side-chain (SC) losses and backbone cleavages, as observed in high-energy EID spectra produced with a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. The levels of fragmentation efficiency evident in the product-ion spectra recorded in this study, as was the case for those recorded in earlier studies with FT ICR mass spectrometers, is currently at the margin of analytical utility. Given that this shortcoming can be remedied, EMS cells incorporated into QqQ or QqTOF mass spectrometers could make tandem high-energy EID mass spectrometry more widely accessible for analysis of peptides, small singly charged molecules, pharmaceuticals, and clinical samples.
    Journal of the American Society for Mass Spectrometry 02/2015; DOI:10.1007/s13361-014-1074-x · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Radical-directed dissociation of gas phase ions is emerging as a powerful and complementary alternative to traditional tandem mass spectrometric techniques for biomolecular structural analysis. Previous studies have identified that coupling of 2-[(2,2,6,6-tetramethylpiperidin-1-oxyl)methyl]benzoic acid (TEMPO-Bz) to the N-terminus of a peptide introduces a labile oxygen-carbon bond that can be selectively activated upon collisional activation to produce a radical ion. Here we demonstrate that structurally-defined peptide radical ions can also be generated upon UV laser photodissociation of the same TEMPO-Bz derivatives in a linear ion-trap mass spectrometer. When subjected to further mass spectrometric analyses, the radical ions formed by a single laser pulse undergo identical dissociations as those formed by collisional activation of the same precursor ion, and can thus be used to derive molecular structure. Mapping the initial radical formation process as a function of photon energy by photodissociation action spectroscopy reveals that photoproduct formation is selective but occurs only in modest yield across the wavelength range (300-220 nm), with the photoproduct yield maximised between 235 and 225 nm. Based on the analysis of a set of model compounds, structural modifications to the TEMPO-Bz derivative are suggested to optimise radical photoproduct yield. Future development of such probes offers the advantage of increased sensitivity and selectivity for radical-directed dissociation.
    Physical Chemistry Chemical Physics 01/2014; 16(10). DOI:10.1039/c3cp54825b · 4.20 Impact Factor