Chemical Genetic Profiling and Characterization of Small-molecule Compounds That Affect the Biosynthesis of Unsaturated Fatty Acids in Candida albicans

Center of Fungal Genetics, Merck-Frosst Canada Ltd., Montreal, Quebec H9H 3L1, Canada.
Journal of Biological Chemistry (Impact Factor: 4.57). 06/2009; 284(29):19754-64. DOI: 10.1074/jbc.M109.019877
Source: PubMed


The balance between saturated and unsaturated fatty acids plays a crucial role in determining the membrane fluidity. In the diploid fungal pathogen Candida albicans, the gene for fatty acid Delta9 desaturase, OLE1, is essential for viability. Using a reverse genetic approach, termed the fitness test, we identified a group of structurally related synthetic compounds that induce specific hypersensitivity of the OLE1(+/-) strain. Genetic repression of OLE1 and chemical inhibition by two selected compounds, ECC145 and ECC188, resulted in a marked decrease in the total unsaturated fatty acids and impaired hyphal development. The resulting auxotroph of both was suppressed by the exogenous monounsaturated fatty acids (16:1Delta9 and 18:1Delta9). These correlations suggest that both compounds affect the level of unsaturated fatty acids, likely by impairing Ole1p directly or indirectly. However, the residual levels of monounsaturated fatty acids (MUFAs) resulted from chemical inhibition were significantly higher than OLE1 repression, indicating even partial inhibition of MUFAs is sufficient to stop cellular proliferation. Although the essentiality of OLE1 was suppressed by MUFAs in vitro, we demonstrated that it was required for virulence in a murine model of systemic candidiasis even when the animals were supplemented with a high fat diet. Thus, the fungal fatty acid desaturase is an attractive antifungal drug target. Taking advantage of the inhibitors and the relevant conditional shut-off strains, we validated several chemical genetic interactions observed in the fitness test profiles that reveal novel genetic interactions between OLE1/unsaturated fatty acids and other cellular processes.

Download full-text


Available from: Minghui Yang,
  • Source
    • "In contrast, humans have two separate enzymes to carry out these activities, making fungal Ole1 an ideal antifungal target (33). Furthermore, recent studies illustrated that components of fatty acid biosynthesis from different Candida species are essential for establishing and maintaining infection in a mouse model of candidiasis (45–47). Xu and colleagues demonstrated that C. albicans Ole1 is necessary for virulence, and Nguyen and colleagues obtained similar results with C. parapsilosis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Temperature is a ubiquitous environmental variable, which can profoundly influence the physiology of living cells as it changes over time and space. When yeast cells are exposed to a sub lethal heat shock, normal metabolic functions become repressed and the heat shock transcription factor Hsf1 is activated, inducing heat shock proteins (HSPs). Candida albicans, the most prevalent human fungal pathogen, is an opportunistic pathogen that has evolved as a relatively harmless commensal of healthy individuals. Even though C. albicans occupies thermally buffered niches, it has retained the classic heat shock response, activating Hsf1 during slow thermal transitions such as the increases in temperature suffered by febrile patients. However, the mechanism of temperature sensing in fungal pathogens remains enigmatic. Few studies in S. cerevisiae suggest that thermal stress is transduced into a cellular signal at the level of the membrane. In this study, we manipulate the fluidity of C. albicans membrane to dissect mechanisms of temperature sensing. We determined that in response to elevated temperature, levels of the fatty acid desaturase OLE1 decrease. Subsequently, loss of Ole1 triggers expression of the fatty acid synthase FAS2. Furthermore, depletion of Ole1 prevents full activation of Hsf1, thereby reducing HSP expression in response to heat shock. This reduction in Hsf1 activation is attributable to the E3 ubiquitin ligase Rsp5, which regulates OLE1 expression. To our knowledge, this is the first study to define a molecular link between fatty acid synthesis and the heat shock response in the fungal kingdom.
    Eukaryotic Cell 06/2014; 13(8). DOI:10.1128/EC.00138-14 · 3.18 Impact Factor
  • Source
    • "In Candida albicans, mode of growth, biofilm versus planktonic [2] or yeast versus hyphal [3] distinctly change the profile of PLs. Limiting the production of unsaturated fatty acids limited the transition from yeast to hyphal form [4] [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Phospholipid remodeling involves phospholipase activity to remove acyl chains and acyltransferases to replace acyl chains. We here describe the characterization of a lysophospholipid acyltransferase in the opportunistic fungal pathogen, Candida albicans. Expression of this gene, C.a. LPT1, complemented the lysophospholipid acyltransferase defect in S. cerevisiae strains lacking the homologous LPT1 gene. In vitro, lysophospholipid acyltransferase activity in these strains showed acyl-CoA substrate specificity, as measured by apparent Vmax/Km ratios, to be linolenoyl-CoA>oleoyl-CoA>linoleoyl-CoA>stearoyl-CoA. To address the physiological importance of C.a. LPT1, homozygous deletion strains were generated. Lysophospholipid acyltransferase activity with amine containing lysophospholipids was dramatically reduced while lysophosphatidylinositol and lysophosphatidic acid esterification was not significantly lowered. However, C.a. LPT1 over-expression yielded an increased amount of lysophosphatidic acyltransferase activity, suggesting a role in de novo phospholipid synthesis. LPT1 deletion strains showed slightly slowed growth in standard liquid media but no phenotype in media containing three antifungals that target sterols. To assess the role of C.a. Lpt1 in phospholipid remodeling, an in vivo, pulse-chase assay utilizing polysorbitan palmitate and mass spectrometry was developed. Cellular phospholipid composition became atypical with the provision of palmitate and gradually returned to the typical distribution when palmitate was removed. Deletion of C.a. LPT1 showed a modest yet significant effect on remodeling under these conditions.
    Biochimica et Biophysica Acta 01/2014; 1841(4). DOI:10.1016/j.bbalip.2013.12.015 · 4.66 Impact Factor
  • Source
    • "To further refine elesclomol's MoA, we made use of a powerful comparative growth assay available in the yeast Saccharomyces cerevisiae. While performed in yeast, this strategy has in previous studies (particularly for cancer drugs) identified relevant mechanistic details that are indicative of the drugs' actions in humans [9], [10], [11], [12], [13]. The assay uses a set of diploid yeast strains that were systematically constructed such that each strain contains a single start-to-stop gene deletion and that the set en toto contains a deletion mutant for each yeast gene [14], [15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Elesclomol is a first-in-class investigational drug currently undergoing clinical evaluation as a novel cancer therapeutic. The potent antitumor activity of the compound results from the elevation of reactive oxygen species (ROS) and oxidative stress to levels incompatible with cellular survival. However, the molecular target(s) and mechanism by which elesclomol generates ROS and subsequent cell death were previously undefined. The cellular cytotoxicity of elesclomol in the yeast S. cerevisiae appears to occur by a mechanism similar, if not identical, to that in cancer cells. Accordingly, here we used a powerful and validated technology only available in yeast that provides critical insights into the mechanism of action, targets and processes that are disrupted by drug treatment. Using this approach we show that elesclomol does not work through a specific cellular protein target. Instead, it targets a biologically coherent set of processes occurring in the mitochondrion. Specifically, the results indicate that elesclomol, driven by its redox chemistry, interacts with the electron transport chain (ETC) to generate high levels of ROS within the organelle and consequently cell death. Additional experiments in melanoma cells involving drug treatments or cells lacking ETC function confirm that the drug works similarly in human cancer cells. This deeper understanding of elesclomol's mode of action has important implications for the therapeutic application of the drug, including providing a rationale for biomarker-based stratification of patients likely to respond in the clinical setting.
    PLoS ONE 01/2012; 7(1):e29798. DOI:10.1371/journal.pone.0029798 · 3.23 Impact Factor
Show more