Article

Improving TNF as a cancer therapeutic: tailor-made TNF fusion proteins with conserved antitumor activity and reduced systemic side effects.

Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.
BioFactors (Impact Factor: 3.09). 06/2009; 35(4):364-72. DOI: 10.1002/biof.50
Source: PubMed

ABSTRACT Tumor necrosis factor (TNF) is highly pleiotropic cytokine regulating diverse cellular processes such as proliferation, cell migration, angiogenesis, differentiation, apoptosis, necrosis, but also survival. Because of its name-giving tumor necrosis-inducing capabilities, TNF has attracted attention very early for antitumor therapy. Although TNF is in clinical use for treatment of soft tissue sarcoma in isolated limb perfusion, its broad use in tumor therapy is prevented so far by its strong systemic proinflammatory effects. Nevertheless, over the past decade, a variety of tailor-made TNF variants have been developed with the aim to reduce TNFs systemic activity without losing its antitumoral effects. Here, we review the progress made toward improving the efficacy of TNF by genetic engineering, tumor targeting, and introduction of prodrug concepts.

0 Bookmarks
 · 
90 Views
  • Source
    Alzheimer's Disease Pathogenesis-Core Concepts, Shifting Paradigms and Therapeutic Targets, 09/2011; , ISBN: 978-953-307-690-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor necrosis factor (TNF) has remarkable antitumor effects, but its systemic therapeutic use is prevented by its lethal inflammatory effects. TNFR1 (P55) is essential for both the antitumor and toxic effects because both of them are absent in P55 deficient mice. In previous work we demonstrated that P55+/- mice are completely resistant to TNF toxicity while the antitumor effects induced by TNF combined with interferon gamma (IFNγ) remain fully functional in these mice. Hence, a high dose of TNF/IFNγ has an excellent therapeutic potential when P55 levels are reduced, because TNF induces tumor regression without systemic toxicity. Here, we provide proof of principle for therapeutic application of this approach by using antisense oligonucleotides. Treatment of mice with antisense oligonucleotides (ASOs) targeting P55 resulted in a strong reduction in P55 protein levels in liver, small intestine and blood mononuclear cells. This P55 downregulation was associated with significant protection of mice against acute TNF toxicity as measured by hypothermia, systemic inflammation and lethality. This treatment also protected mice against toxicity of TNF/IFNγ treatment in several cancer models: B16Bl6, Lewis lung carcinoma and a lung colony model. Our results confirm the therapeutic value of this strategy, which could lead to the development of a safer and more effective TNF/IFNγ antitumor therapy. © 2013 Wiley Periodicals, Inc.
    International Journal of Cancer 02/2014; · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A growing body of evidence suggests that the efficacy of cytokines in cancer therapy can be increased by targeting strategies based on conjugation with ligands that recognize receptors expressed by tumor cells or elements of the tumor microenvironment, including the tumor vasculature. The targeting approach is generally conceived to permit administration of low, yet pharmacologically active, doses of drugs, thereby avoiding toxic reactions. However, it is becoming clear that, in the case of cytokines, this strategy has another inherent advantage, i.e. the possibility of administering extremely low doses that do not activate systemic counter-regulatory mechanisms, which may limit their potential therapeutic effects. This review is focused on the use of tumor vasculature-homing peptides as vehicles for targeted delivery of cytokines to tumor blood vessel. In particular, we provide an overview of peptide-cytokine conjugates made with peptides containing the NGR, RGD, isoDGR or RGR sequences and describe, in more details, the biological and pharmacological properties of NGR-hTNF, a peptide-tumor necrosis factor-α conjugate that is currently being tested in phase II and III clinical studies. The results of preclinical and clinical studies performed with these products suggest that peptide-mediated vascular-targeting is indeed a viable strategy for delivering bioactive amounts of cytokines to tumor endothelial cells without causing the activation of counter-regulatory mechanisms and toxic reactions.
    BioDrugs 06/2013; · 2.12 Impact Factor