Article

Dopaminergic response to graded dopamine concentration elicited by four amphetamine doses

Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA.
Synapse (Impact Factor: 2.43). 09/2009; 63(9):764-72. DOI: 10.1002/syn.20659
Source: PubMed

ABSTRACT We studied the metabolic responses to different DA concentrations elicited by four doses of D-amphetamine (AMPH, 0, 0.25, 0.5, 1.0, or 3.0 mg/kg). We compared the degree of DA release (via microdialysis) with striatal cAMP activity and whole brain maps of cerebral blood volume (rCBV) changes (via pharmacological MRI, phMRI). Results: AMPH increased DA release in the caudate/putamen (CPu) and cAMP activity in the CPu, nucleus accumbens (NAc), and medial prefrontal cortex (mPFC) in a linear dose-dependent manner (P < 0.0001). The cAMP data suggest that, postsynaptically, signal transduction induced by D1 receptor is stronger than that of D2 receptor at the higher doses (1-3 mg/kg). phMRI showed that, while higher doses of AMPH (3 mg/kg (n = 7) and 1 mg/kg (n = 6)) induced significant rCBV increases in the CPu and NAc, the degree of rCBV increase was much smaller with AMPH of 0.5 mg/kg (n = 6). In contrast, AMPH of 0.25 mg/kg (n = 8) induced significant rCBV decreases in the anteromedial CPu and NAc. The sign switch of rCBV in response to AMPH from low to high doses likely reflects the switching in the balance of D2/D3 stimulation vs. D1/D5 stimulation. In conclusion, degree of postsynaptic signal transduction is linearly correlated to the extracellular DA concentration. However, the presynaptic binding may dominate the overall DA innervation at the lower range of DA concentration.

0 Followers
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by pronounced social and communication deficits and stereotyped behaviours. Recent psychosocial and neuroimaging studies have highlighted reward-processing deficits and reduced dopamine (DA) mesolimbic circuit reactivity in ASD patients. However, the neurobiological and molecular determinants of these deficits remain undetermined. Mouse models recapitulating ASD-like phenotypes could help generate hypotheses about the origin and neurophysiological underpinnings of clinically relevant traits. Here we used functional magnetic resonance imaging (fMRI), behavioural and molecular readouts to probe dopamine neurotransmission responsivity in BTBR T+ Itpr3tf/J mice (BTBR), an inbred mouse line widely used to model ASD-like symptoms owing to its robust social and communication deficits, and high level of repetitive stereotyped behaviours. C57BL/6J (B6) mice were used as normosocial reference comparators. DA reuptake inhibition with GBR 12909 produced significant striatal DA release in both strains, but failed to elicit fMRI activation in widespread forebrain areas of BTBR mice, including mesolimbic reward and striatal terminals. In addition, BTBR mice exhibited no appreciable motor responses to GBR 12909. DA D1 receptor-dependent behavioural and signalling responses were found to be unaltered in BTBR mice, whereas dramatic reductions in pre- and postsynaptic DA D2 and adenosine A2A receptor function was observed in these animals. Overall these results document profoundly compromised DA D2-mediated neurotransmission in BTBR mice, a finding that is likely to have a role in the distinctive social and behavioural deficits exhibited by these mice. Our results call for a deeper investigation of the role of dopaminergic dysfunction in mouse lines exhibiting ASD-like phenotypes, and possibly in ASD patient populations.
    Translational Psychiatry 08/2014; 4(8):e427. DOI:10.1038/tp.2014.69 · 4.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although functional MRI traditionally has been applied mainly to study changes in task-induced brain function, evolving acquisition methodologies and improved knowledge of signal mechanisms have increased the utility of this method for studying responses to pharmacological stimuli, a technique often dubbed "phMRI". The proliferation of higher magnetic field strengths and the use of exogenous contrast agent have boosted detection power, a critical factor for successful phMRI due to the restricted ability to average multiple stimuli within subjects. Receptor-based models of neurovascular coupling, including explicit pharmacological models incorporating receptor densities and affinities and data-driven models that incorporate weak biophysical constraints, have demonstrated compelling descriptions of phMRI signal induced by dopaminergic stimuli. This report describes phMRI acquisition and analysis methodologies, with an emphasis on data-driven analyses. As an example application, statistically efficient data-driven regressors were used to describe the biphasic response to the mu-opioid agonist remifentanil, and antagonism using dopaminergic and GABAergic ligands revealed modulation of the mesolimbic pathway. Results illustrate the power of phMRI as well as our incomplete understanding of mechanisms underlying the signal. Future directions are discussed for phMRI acquisitions in human studies, for evolving analysis methodologies, and for interpretative studies using the new generation of simultaneous PET/MRI scanners.
    Neuropharmacology 03/2014; DOI:10.1016/j.neuropharm.2014.02.018 · 4.82 Impact Factor
  • Source
    Journal of Behavioral and Brain Science 08/2014; 4:375-383. DOI:10.4236/jbbs.2014.48036

Full-text (2 Sources)

Download
36 Downloads
Available from
Jun 5, 2014