Article

Effects of soy vs. casein protein on body weight and glycemic control in female monkeys and their offspring

Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1040, USA.
American Journal of Primatology (Impact Factor: 2.14). 09/2009; 71(9):802-11. DOI: 10.1002/ajp.20716
Source: PubMed

ABSTRACT Nutritional interventions are important for reducing obesity and related conditions. Soy is a good source of protein and also contains isoflavones that may affect plasma lipids, body weight, and insulin action. Described here are data from a monkey breeding colony in which monkeys were initially fed a standard chow diet that is low fat with protein derived from soy. Monkeys were then randomized to a defined diet with a fat content similar to the typical American diet (TAD) containing either protein derived from soy (TAD soy) or casein-lactalbumin (TAD casein). The colony was followed for over two years to assess body weight, and carbohydrate and lipid measures in adult females (n=19) and their offspring (n=25). Serum isoflavone concentrations were higher with TAD soy than TAD casein, but not as high as when monkey chow was fed. Offspring consuming TAD soy had higher serum isoflavone concentrations than adults consuming TAD soy. Female monkeys consuming TAD soy had better glycemic control, as determined by fructosamine concentrations, but no differences in lipids or body weight compared with those consuming diets with TAD casein. Offspring born to dams consuming TAD soy had similar body weights at birth but over a two-year period weighed significantly less, had significantly lower triglyceride concentrations, and like adult females, had significantly lower fructosamine concentrations compared to TAD casein. Glucose tolerance tests in adult females were not significantly different with diet, but offspring eating TAD soy had increased glucose disappearance with overall lower glucose and insulin responses to the glucose challenge compared with TAD casein. Potential reasons for the additional benefits of TAD soy observed in offspring but not in adults may be related to higher serum isoflavone concentrations in offspring, presence of the diet differences throughout more of their lifespan (including gestation), or different tissue susceptibilities in younger animals.

0 Bookmarks
 · 
146 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Some evidence suggests that phytoestrogens, such as soy-derived isoflavones, may have beneficial effects on cardiovascular health and glycemic control. These data are mainly limited to postmenopausal women or individuals at elevated cardiometabolic risk. There is a lack of data for pregnant women who have elevated estrogen levels and physiologically altered glucose and lipid metabolism. We analyzed data from 299 pregnant women who participated in the NHANES 2001-2008 surveys. Multivariable linear regression analyses were used to examine the association between urinary concentrations of isoflavonoids and cardiometabolic risk markers, adjusted for body mass index, pregnancy trimester, total energy intake, dietary intake of protein, fiber, and cholesterol, and demographic and lifestyle factors. Cardiometabolic risk markers were log-transformed, and geometric means were calculated by quartiles of urinary concentrations of isoflavonoids. Comparing women in the highest vs. lowest quartiles of urine total isoflavone concentrations, we observed significant, inverse associations with circulating concentrations of fasting glucose (79 vs. 88 mg/dL, P-trend = 0.0009), insulin (8.2 vs. 12.8 μU/mL, P-trend = 0.03), and triglyceride (156 vs. 185 mg/dL, P-trend = 0.02), and the homeostasis model assessment of insulin resistance (1.6 vs. 2.8, P-trend = 0.01), but not for total, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol. The concentrations of individual isoflavonoids, daidzein, equol, and O-desmethylangolensin were inversely associated with some cardiometabolic risk markers, although no clear pattern emerged. These data suggest that there may be a relation between isoflavone intake and cardiometabolic risk markers in pregnant women.
    Journal of Nutrition 12/2013; 144(3). DOI:10.3945/jn.113.184069 · 4.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies showed that soy bean has the potential to improve many aspects of diabetes state and provide metabolic benefits that aid in weight management. We aimed to determine the effects of soy bean flour enriched bread on anthropometric indices and blood pressure among type 2 diabetic patients. This randomized, crossover, clinical trial was performed in 30 type 2 diabetic women. There were two trial periods for 6 weeks and a wash-out period for 4 weeks. In the soy bread diet period, 120 g of soy bean flour enriched bread was consumed each day instead of the same amount of their usual bread or other cereal products. After a 4-week wash-out period, participants were crossed over for another 6 weeks. Mean (±SD) age of study participants was 45.7 ± 3.8 years. The results of our study showed no significant effects of soy bean flour enriched bread on anthropometric indices and blood pressure among diabetic patients. Despite the slight reduction in BMI, waist circumference, and percent of body fat, there were no significant differences in changes of these values between two groups. No significant changes in waist to hip ratio and blood pressure were seen.
    International Journal of Endocrinology 01/2014; 2014:240760. DOI:10.1155/2014/240760 · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nutrient composition of a diet (D) has been shown to interact with genetic predispositions (G) to affect various lipid phenotypes. Our aim in this study was to confirm G × D interaction and determine whether the interaction extends to other cardiometabolic risk factors such as glycemic measures and body weight. Subjects were vervet monkeys (Chlorocebus aethiops sabaeus; n = 309) from a multigenerational pedigreed colony initially fed with a plant-based diet, standard primate diet (18% calories from protein, 13% from fat, and 69% from carbohydrates), and subsequently challenged for 8 weeks with a diet modeled on the typical American diet (18% calories from protein, 35% from fat, and 47% from carbohydrates). Our results showed that although exposure to the challenge diet did not result in significant changes in weight, most lipid and glycemic biomarkers moved in an adverse direction (P < 0.01). Quantitative genetic analyses showed that cardiometabolic phenotypes were significantly heritable under both dietary conditions (P < 0.05), and there was significant evidence of G × D interaction for these phenotypes. We observed significant differences in the additive genetic variances for most lipid phenotypes (P < 10(-4) ), indicating that the magnitude of genetic effects varies by diet. Furthermore, genetic correlations between diets differed significantly from 1 with respect to insulin, body weight, and some lipid phenotypes (P < 0.01). This implied that distinct genetic effects are involved in the regulation of these phenotypes under the two dietary conditions. These G × D effects confirm and extend previous observations in baboons (Papio sp.) and suggest that mimicking the typical human nutritional environment can reveal genetic influences that might not be observed in animals consuming standard, plant-based diets. Am. J. Primatol. 00:1-9, 2013. © 2013 Wiley Periodicals, Inc.
    American Journal of Primatology 05/2013; 75(5). DOI:10.1002/ajp.22125 · 2.14 Impact Factor