Article

# X-ray phase imaging: Demonstration of extended conditions for homogeneous objects.

Optics Express (Impact Factor: 3.55). 07/2004; 12(13):2960-5. DOI:10.1364/OPEX.12.002960

Source: PubMed

- [show abstract] [hide abstract]

**ABSTRACT:**The reconstruction problem in in-line X-ray Phase-Contrast Tomography is usually approached by solving two independent linearized sub-problems: phase retrieval and tomographic reconstruction. Both problems are often ill-posed and require the use of regularization techniques that lead to artifacts in the reconstructed image. We present a novel reconstruction approach that solves two coupled linear problems algebraically. Our approach is based on the assumption that the frequency space of the tomogram can be divided into bands that are accurately recovered and bands that are undefined by the observations. This results in an underdetermined linear system of equations. We investigate how this system can be solved using three different algebraic reconstruction algorithms based on Total Variation minimization. These algorithms are compared using both simulated and experimental data. Our results demonstrate that in many cases the proposed algebraic algorithms yield a significantly improved accuracy over the conventional L2-regularized closed-form solution. This work demonstrates that algebraic algorithms may become an important tool in applications where the acquisition time and the delivered radiation dose must be minimized.Optics Express 05/2013; 21:12185-12196. · 3.55 Impact Factor - Materials. 01/2012; 5(5):937-965.
- [show abstract] [hide abstract]

**ABSTRACT:**Phase retrieval is a technique for extracting quantitative phase information from X-ray propagation-based phase-contrast tomography (PPCT). In this paper, the performance of different single distance phase retrieval algorithms will be investigated. The algorithms are herein called phase-attenuation duality Born Algorithm (PAD-BA), phase-attenuation duality Rytov Algorithm (PAD-RA), phase-attenuation duality Modified Bronnikov Algorithm (PAD-MBA), phase-attenuation duality Paganin algorithm (PAD-PA) and phase-attenuation duality Wu Algorithm (PAD-WA), respectively. They are all based on phase-attenuation duality property and on weak absorption of the sample and they employ only a single distance PPCT data. In this paper, they are investigated via simulated noise-free PPCT data considering the fulfillment of PAD property and weakly absorbing conditions, and with experimental PPCT data of a mixture sample containing absorbing and weakly absorbing materials, and of a polymer sample considering different degrees of statistical and structural noise. The simulation shows all algorithms can quantitatively reconstruct the 3D refractive index of a quasi-homogeneous weakly absorbing object from noise-free PPCT data. When the weakly absorbing condition is violated, the PAD-RA and PAD-PA/WA obtain better result than PAD-BA and PAD-MBA that are shown in both simulation and mixture sample results. When considering the statistical noise, the contrast-to-noise ratio values decreases as the photon number is reduced. The structural noise study shows that the result is progressively corrupted by ring-like artifacts with the increase of structural noise (i.e. phantom thickness). The PAD-RA and PAD-PA/WA gain better density resolution than the PAD-BA and PAD-MBA in both statistical and structural noise study.Optics Express 03/2013; 21(6):7384-99. · 3.55 Impact Factor

Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.