Article

L1 cell adhesion molecules as regulators of tumor cell invasiveness

Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA.
Cell adhesion & migration (Impact Factor: 3.4). 08/2009; 3(3):275-7. DOI: 10.4161/cam.3.3.8689
Source: PubMed

ABSTRACT Fast growing malignant cancers represent a major therapeutic challenge. Basic cancer research has concentrated efforts to determine the mechanisms underlying cancer initiation and progression and reveal candidate targets for future therapeutic treatment of cancer patients. With known roles in fundamental processes required for proper development and function of the nervous system, L1-CAMs have been recently identified as key players in cancer biology. In particular L1 has been implicated in cancer invasiveness and metastasis, and has been pursued as a powerful prognostic factor, indicating poor outcome for patients. Interestingly, L1 has been shown to be important for the survival of cancer stem cells, which are thought to be the source of cancer recurrence. The newly recognized roles for L1CAMs in cancer prompt a search for alternative therapeutic approaches. Despite the promising advances in cancer basic research, a better understanding of the molecular mechanisms dictating L1-mediated signaling is needed for the development of effective therapeutic treatment for cancer patients.

0 Followers
 · 
88 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: Expression of the adhesion molecule L1-CAM (L1) has been shown to correlate with early recurrence in breast cancer. Here, we investigated whether L1-CAM expression of breast cancer cells might influence adherence to human pulmonary microvascular endothelial cells (HPMEC) and thus promote metastasis. METHODS: MDA-MB231-Fra2 breast cancer cells that express high levels of L1-CAM (L1(high) cells) were stably transfected to generate clones with strong L1-CAM downregulation. Adhesion to activated HPMEC was studied in dynamic cell flow and static assays. Potential binding partners on endothelial cells were identified by blocking experiments and adhesion assays after coating of the flow channels with recombinant proteins. RESULTS: Adhesion of L1(high) cells to activated HPMEC was significantly higher compared to L1l(ow) clones under flow conditions. Blocking experiments and adhesion assays with recombinant proteins identified activated leucocyte cell adhesion molecule (ALCAM) or L1 itself, but not ICAM-1, as potential binding partners on endothelial cells. E-selectin blocking antibodies strongly diminished the adherence of breast cancer cells irrespective of their L1-CAM expression. CONCLUSIONS: Our experiments indicate that L1-CAM expression on breast cancer cells can promote adherence to activated endothelial cells by binding to endothelial L1-CAM or ALCAM. This mechanism might lead to increased metastasis and a poor prognosis in L1-CAM-positive carcinomas in vivo. Therefore, L1-CAM might be a suitable therapeutic target in breast cancers with a high L1-CAM expression.
    Journal of Cancer Research and Clinical Oncology 09/2012; DOI:10.1007/s00432-012-1306-z · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The L1 syndrome, a genetic disease that affects 1/30,000 newborn males, is sustained by numerous missense mutations of L1CAM, an adhesion surface protein active also in transmembrane signaling, essential for the development and function of neurons. To investigate the cell biology of L1CAM we employed a high REST clone of the pheochromocytoma PC12 line, defective in L1CAM expression and neurite outgrowth. The clone was transfected with wild-type L1CAM and four missense, disease-inducing point mutants encoding proteins distributed to the cell surface. The mutant-expressing cells, defective in adhesion to extracellular matrix proteins and in migration, exhibited unchanged proliferation. The NGF-induced neurite outgrowth was re-established in defective clone cells transfected with the wild-type and the H210Q and I219T L1CAMs mutants, but not in the others. The stimulated outgrowth was confirmed in a second defective PC12 clone over-expressing the NGF receptor TrkA, treated with NGF and/or a recombinant L1CAM chimera. These results revealed a new function of L1CAM, a positive, robust and dose-dependent modulation of the TrkA receptor activated spontaneously or by NGF. The variable effects observed with the different L1CAM mutants suggest that this function contributes to the marked heterogeneity of symptoms and severity observed in the patients affected by the L1 syndrome. © 2012 The Authors Journal of Neurochemistry © 2012 International Society forNeurochemistry.
    Journal of Neurochemistry 09/2012; 124(3). DOI:10.1111/jnc.12015 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: L1 cell adhesion molecule (L1CAM), an adhesion/signaling protein encoded by a gene target of the transcription repressor RE-1-Silencing Transcription factor (REST), is expressed in two alternatively spliced isoforms. The full-length isoform, typical of low-REST neural cells, plays key roles in survival/migration, outgrowth/fasciculation/regeneration of axons, synaptic plasticity; the isoform missing two mini-exons, abundant in a few high-REST non-neural cells, maintains some effect on migration and proliferation. To investigate whether and how L1CAM alternative splicing depends on REST we used neural cell models expressing low or high levels of REST (PC12, SH-SY5Y, differentiated NT2/D1 and primary neurons transduced or not with REST). The short isoform was found to rise when the low-REST levels of neural cells were experimentally increased, while the full-length isoform increased in high-REST cells when the repressor tone was attenuated. These results were due to Nova2, a neural cell-specific splicing factor shown here to be repressed by REST. REST control of L1CAM occurs therefore by two mechanisms, transcription and alternative splicing. The splicing mechanism, affecting not only L1CAM but all Nova2 targets (∼7% of brain-specific splicing, including the mRNAs of other adhesion and synaptic proteins) is expected to be critical during development and important also for the structure and function of mature neural cells.
    Journal of Neurochemistry 12/2011; 120(5):699-709. DOI:10.1111/j.1471-4159.2011.07626.x · 4.24 Impact Factor

Preview

Download
0 Downloads
Available from