Docking of 1,4-benzodiazepines in the alpha1/gamma2 GABA(A) receptor modulator site.

Laboratory of Molecular Neurobiology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA.
Molecular pharmacology (Impact Factor: 4.53). 06/2009; 76(2):440-50. DOI: 10.1124/mol.109.054650
Source: PubMed

ABSTRACT Positive allosteric modulation of the GABA(A) receptor (GABA(A)R) via the benzodiazepine recognition site is the mechanism whereby diverse chemical classes of therapeutic agents act to reduce anxiety, induce and maintain sleep, reduce seizures, and induce conscious sedation. The binding of such therapeutic agents to this allosteric modulatory site increases the affinity of GABA for the agonist recognition site. A major unanswered question, however, relates to how positive allosteric modulators dock in the 1,4-benzodiazepine (BZD) recognition site. In the present study, the X-ray structure of an acetylcholine binding protein from the snail Lymnea stagnalis and the results from site-directed affinity-labeling studies were used as the basis for modeling of the BZD binding pocket at the alpha(1)/gamma(2) subunit interface. A tethered BZD was introduced into the binding pocket, and molecular simulations were carried out to yield a set of candidate orientations of the BZD ligand in the binding pocket. Candidate orientations were refined based on known structure-activity and stereospecificity characteristics of BZDs and the impact of the alpha(1)H101R mutation. Results favor a model in which the BZD molecule is oriented such that the C5-phenyl substituent extends approximately parallel to the plane of the membrane rather than parallel to the ion channel. Application of this computational modeling strategy, which integrates site-directed affinity labeling with structure-activity knowledge to create a molecular model of the docking of active ligands in the binding pocket, may provide a basis for the design of more selective GABA(A)R modulators with enhanced therapeutic potential.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of new drugs that selectively block or modulate ion channels has great potential to provide new treatments for a host of conditions. One promising avenue revolves around modifying or mimicking certain naturally occurring ion channel modulator toxins. This strategy appears to offer the prospect of designing drugs that are both potent and specific. The use of computational modeling is crucial to this endeavor, as it has the potential to provide lower cost alternatives for exploring the effects of new compounds on ion channels. In addition, computational modeling can provide structural information and theoretical understanding that is not easily derivable from experimental results. In this review, we look at the theory and computational methods that are applicable to the study of ion channel modulators. The first section provides an introduction to various theoretical concepts, including force-fields and the statistical mechanics of binding. We then look at various computational techniques available to the researcher, including molecular dynamics, Brownian dynamics, and molecular docking systems. The latter section of the review explores applications of these techniques, concentrating on pore blocker and gating modifier toxins of potassium and sodium channels. After first discussing the structural features of these channels, and their modes of block, we provide an in-depth review of past computational work that has been carried out. Finally, we discuss prospects for future developments in the field.
    Physiological Reviews 04/2013; 93(2):767-802. · 30.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ionotropic GABAA receptors (GABAARs) are widely distributed in the central nervous system where they play essential roles in numerous physiological and pathological processes. A high degree of structural heterogeneity of the GABAAR has been revealed and extensive effort has been made to develop selective and potent GABAAR agonists. This review investigates the use of heterocyclic carboxylic acid bioisosteres within the GABAAR area. Several heterocycles including 3-hydroxyisoxazole, 3-hydroxyisoxazoline, 3-hydroxyisothiazole, and the 1- and 3-hydroxypyrazole rings have been employed in order to map the orthosteric binding site. The physicochemical properties of the heterocyclic moieties making them suitable for bioisosteric replacement of the carboxylic acid in the molecule of GABA are discussed. A variety of synthetic strategies for synthesis of the heterocyclic scaffolds are available. Likewise, methods for introduction of substituents into specific positions of the heterocyclic scaffolds facilitate the investigation of different regions in the orthosteric binding pocket in close vicinity of the core scaffolds of muscimol/GABA. The development of structural models, from pharmacophore models to receptor homology models, has provided more insight into the molecular basis for binding. Similar binding modes are proposed for the heterocyclic GABA analogues covered in this review by use of ligand-receptor docking into the receptor homology model and the presented structure-activity relationships. A network of interactions between the analogues and the binding pocket is leaving no room for substituents and underline the limited space in the GABAAR orthosteric binding site when in the agonist conformation.
    Neurochemical Research 12/2013; · 2.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of microwave energy in chemical reactions has revolutionized the field of heterocyclic chemistry in the past two decades. Synergy of microwave methodology with reactions performed on support media and/or in the absence of solvent constitutes an environmentally clean technique, that offers tremendous advantages such as clean chemistry, reduction in reaction times, improved yields, and applicability to wide range of reactions, safety and tremendous scope for automation over the traditional heating. The benzoannulated azaheterocycles display an impressive repertoire of biological activities. The present review will provide an in-depth view of microwave-assisted synthetic methodologies of benzo-fused seven-membered azaheterocycles such as benzodiazepines, benzothiazepines and benzoxazepines.
    Mini-Reviews in Organic Chemistry 01/2014; 11(1). · 1.06 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014