DNA vaccination against macrophage migration inhibitory factor improves atopic dermatitis in murine models

Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
The Journal of allergy and clinical immunology (Impact Factor: 11.25). 06/2009; 124(1):90-9. DOI: 10.1016/j.jaci.2009.04.025
Source: PubMed

ABSTRACT Atopic dermatitis (AD) is a common chronic inflammatory skin disease. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that has been implicated in the pathogenesis of AD. Recently, we developed a novel DNA vaccine that generates neutralizing endogenous anti-MIF antibodies.
This study explores the preventive and therapeutic effects of this MIF-DNA vaccine in mouse models of AD.
Two different AD model mice (DS-Nh and NC/Nga) received MIF-DNA vaccination to analyze preventive and therapeutic effects, as assessed by clinical skin scores, histologic findings, and serum IgE levels.
In murine models of AD, MIF-DNA vaccination prevented the occurrence of the AD skin phenotype. Furthermore, administration of MIF-DNA vaccine to mice that had already developed AD produced a rapid improvement in AD skin manifestation. There were reduced histologic signs of inflammation and lower serum IgE levels in treated mice compared with those seen in control animals. Finally, passive transfer of IgG from MIF-DNA vaccinated mice to AD mice also produced a significant therapeutic effect. These results demonstrate that MIF-DNA vaccination not only prevents the development of AD but also improves the symptoms of pre-existing AD.
Taken together, the induction of an anti-MIF autoantibody response using MIF-DNA vaccination appears to be a useful approach in the treatment of AD.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ultraviolet (UV) radiation is the most common cause of physical injury to the skin due to environmental damage, and UV exposure substantially increases the risk of actinic damage to the skin. The inflammatory changes induced by acute UV exposure include erythema (sunburn) of the skin, while chronic exposure to solar UV radiation causes photo-aging, immunosuppression, and ultimately, carcinogenesis of the skin. After skin damage by UV radiation, the cells are known to secrete many cytokines, including interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α. and macrophage migration inhibitory factor (MIF). MIF was originally identified as a lymphokine that concentrates macrophages at inflammatory loci, and is known to be a potent activator of macrophages in vivo. MIF is considered to play an important role in cell-mediated immunity. Since the molecular cloning of MIF cDNA, MIF has been re-evaluated as a proinflammatory cytokine and pituitary-derived hormone that potentiates endotoxemia. MIF is ubiquitously expressed in various tissues, including the skin. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. This article reviews the latest findings on the roles of MIF with regard to UV-induced skin cancer.
    09/2010; 2(3):1555-1564. DOI:10.3390/cancers2031555
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here, we report a simple and low-cost oral oligodeoxynucleotide (ODN) delivery system targeted to the gut Peyer's patches (PPs). This system requires only Dulbecco's modified eagle's medium, calcium chloride, ODNs, and basic laboratory equipment. ODN nanocapsules (ODNcaps) were directly delivered to the PPs through oral administration and were taken up by macrophages in the PPs, where they induced an immune response. Long-term continuous oral dosing with inhibitory/suppressive ODNcaps (iODNcaps, 'iSG3caps' in this study) was evaluated using an atopic dermatitis mouse model to visually monitor disease course. Administration of iSG3caps improved skin lesions and decreased epidermal thickness. Underlying this effect is the ability of iSG3 to bind to and prevent phosphorylation of signal transducer and activator of transcription 6, thereby blocking the interleukin-4 signaling cascade mediated by binding of allergens to type 2 helper T cells. The results of our iSG3cap oral delivery experiments suggest that iSG3 may be useful for treating allergic diseases.Molecular Therapy (2014); doi:10.1038/mt.2014.239.
    Molecular Therapy 12/2014; 23(2). DOI:10.1038/mt.2014.239 · 6.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Macrophage migration inhibitory factor (MIF) is a critical immunoregulatory pluripotent cytokine. It has been re-evaluated as a proinflammatory cytokine, pituitary hormone and glucocorticoid-induced immunoregulatory protein. MIF exists in human epidermis, especially in the basal layer and also is expressed constitutively by monocytes/macrophages, T cells, B cells, endocrine, and epithelial cells. In the field of dermatology, MIF is believed to be a detrimental factor in inflammatory dermatological diseases including atopic dermatitis (AD), psoriasis, vitiligo, pemphigus vulgaris, bullous pemphigoid (BP), alopecia areata (AA) as well as other conditions such as photoaging, and photocarcinigenesis. The objective of this review is to gather and summarize MIF related disorders in dermatology and present valuable information for readers and researchers.
    Indian Journal of Dermatology 01/2013; 58(2):157. DOI:10.4103/0019-5154.108068