Purification and characterization of Caenorhabditis elegans NTH, a homolog of human endonuclease III: essential role of N-terminal region.

Laboratory of Radiation Biology, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
DNA Repair (Impact Factor: 3.36). 08/2009; 8(7):844-51. DOI: 10.1016/j.dnarep.2009.04.020
Source: PubMed

ABSTRACT Oxidatively damaged bases in DNA cause many types of deleterious effects. The main enzyme that removes such lesions is DNA glycosylase, and accordingly, DNA glycosylase plays an important role in genome stability. Recently, a relationship between DNA glycosylases and aging has been suggested, but it remains controversial. Here, we investigated DNA glycosylases of C. elegans, which is a useful model organism for studying aging. We firstly identified a C. elegans homolog of endonuclease III (NTH), which is a well-conserved DNA glycosylase for oxidatively damaged pyrimidine bases, based on the activity and homology. Blast searching of the Wormbase database retrieved a sequence R10E4.5, highly homologous to the human NTH1. However, the R10E4.5-encoded protein did not have NTH activity, and this was considered to be due to lack of the N-terminal region crucial for the activity. Therefore, we purified the protein encoded by the sequence containing both R10E4.5 and the 117-bp region upstream from it, and found that the protein had the NTH activity. The endogenous CeNTH in the extract of C. elegans showed the same DNA glycosylase activity. Therefore, we concluded that the genuine C. elegans NTH gene is not the R10E4.5 but the sequence containing both R10E4.5 and the 117-bp upstream region. NTH-deficient C. elegans showed no difference from the wild-type in lifespan and was not more sensitive to two oxidizing agents, H2O2 and methyl viologen. This suggests that C. elegans has an alternative DNA glycosylase that repairs pyrimidine bases damaged by these agents. Indeed, DNA glycosylase activity that cleaved thymine glycol containing oligonucleotides was detected in the extract of the NTH-deficient C. elegans.

  • [Show abstract] [Hide abstract]
    ABSTRACT: 8-Oxo-dGTP, an oxidised form of dGTP generated in the nucleotide pool, can be incorporated opposite adenine or cytosine in template DNA, which can in turn induce mutations. In this study, we identified a novel MutT homolog (NDX-2) of Caenorhabditis elegans that hydrolyzes 8-oxo-dGDP to 8-oxo-dGMP. In addition, we found that NDX-1, NDX-2 and NDX-4 proteins have 8-oxo-GTPase or 8-oxo-GDPase activity. The sensitivity of ndx-2 knockdown C. elegans worms to methyl viologen and menadione bisulphite was increased compared with that of control worms. This sensitivity was rescued by depletion of chk-2 and clk-2, suggesting that growth of the worms is regulated by the checkpoint pathway in response to the accumulation of oxidised nucleotides. Moreover, we found that the sensitivity to menadione bisulphite of ndx-1 and ndx-2-double knockdown worms was enhanced by elimination of XPA-1, a factor involved in nucleotide excision repair. The rescue effect by depletion of chk-2 and clk-2 was limited in the xpa-1 mutant, suggesting that the chk-2 and clk-2 checkpoint pathway is partially linked to the function of XPA-1.
    Mutagenesis 01/2014; 29(2). DOI:10.1093/mutage/get067 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress promotes human aging and contributes to common neurodegenerative diseases. Endogenous DNA damage induced by oxidative stress is believed to be an important promoter of neurodegenerative diseases. Although a large amount of evidence correlates a reduced DNA repair capacity with aging and neurodegenerative disease, there is little direct evidence of causality. Moreover, the contribution of oxidative DNA damage to the aging process is poorly understood. We have used the nematode Caenorhabditis elegans to study the contribution of oxidative DNA damage and repair to aging. C. elegans is particularly well suited to tackle this problem because it has a minimum complexity DNA repair system, which enables us to circumvent the important limitation presented by the extensive redundancy of DNA repair enzymes in mammals.
    10/2013; 2(4):e27337. DOI:10.4161/worm.27337
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Human oxidation resistance 1 (OXR1) functions in protection against oxidative damage and its homologs are highly conserved in eukaryotes examined so far, but its function still remains uncertain. In this study, we identified a homolog (LMD-3) of human OXR1 in the nematode Caenorhabditis elegans (C. elegans). The expressed LMD-3 was able to suppress the mutator phenotypes of E. coli mutMmutY and mutT mutants. Purified LMD-3 did not have enzymatic activity against 8-oxoG, superoxide dismutase or catalase activities. Interestingly, the expression of LMD-3 was able to suppress the methyl viologen (MV) or menadione sodium bisulfite-induced expression of soxS and sodA genes in E. coli. The sensitivity of the C. elegans lmd-3 mutant to oxidative and heat stress was markedly higher than that of wild-type strain N2. These results suggest that LMD-3 protects cells against oxidative stress. Furthermore, we found that the lifespan of the C. elegans lmd-3 mutant was significantly reduced compared with that of the N2. The shorter lifespan resulted from the acceleration of aging. We further examined the effects of deletions in other oxidative defense genes on the properties of the lmd-3 mutant. The deletion of sod-2 and sod-3, which are mitochondrial superoxide dismutases, extended the lifespan of the lmd-3 mutant. These results indicate that, in cooperation with mitochondrial SODs, LMD-3 contributes to protection against oxidative stress and aging in C. elegans.
    Free Radical Research 05/2014; DOI:10.3109/10715762.2014.927063 · 2.99 Impact Factor