Article

The Rho-Linked Mental Retardation Protein OPHN1 Controls Synaptic Vesicle Endocytosis via Endophilin A1

Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York, NY 11724, USA.
Current biology: CB (Impact Factor: 9.92). 06/2009; 19(13):1133-9. DOI: 10.1016/j.cub.2009.05.022
Source: PubMed

ABSTRACT Neurons transmit information at chemical synapses by releasing neurotransmitters that are stored in synaptic vesicles (SVs) at the presynaptic site. After release, these vesicles need to be efficiently retrieved in order to maintain synaptic transmission. In concurrence, malfunctions in SV recycling have been associated with cognitive disorders. Oligophrenin-1 (OPHN1) encodes a Rho-GTPase-activating protein (Rho-GAP) whose loss of function causes X-linked mental retardation. OPHN1 is highly expressed in the brain and present both pre- and postsynaptically in neurons. Previous studies report that postsynaptic OPHN1 is important for dendritic spine morphogenesis, but its function at the presynaptic site remains largely unexplored. Here, we present evidence that reduced or defective OPHN1 signaling impairs SV cycling at hippocampal synapses. In particular, we show that OPHN1 knockdown affects the kinetic efficiency of endocytosis. We further demonstrate that OPHN1 forms a complex with endophilin A1, a protein implicated in membrane curvature generation during SV endocytosis and, importantly, that OPHN1's interaction with endophilin A1 and its Rho-GAP activity are important for its function in SV endocytosis. Our findings suggest that defects in efficient SV retrieval may contribute to the pathogenesis of OPHN1-linked cognitive impairment.

Download full-text

Full-text

Available from: Nael Nadif Kasri, Apr 16, 2014
0 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of group I metabotropic glutamate receptors leads to long-term depression (mGluR-LTD). Alterations in this form of plasticity have been linked to drug addiction and cognitive disorders. A key characteristic of mGluR-LTD is its dependence on rapid protein synthesis; however, the identities of the proteins mediating LTD remain elusive. Here, we identify the X-linked mental retardation protein OPHN1 as a molecule essential for mGluR-LTD in the hippocampus. mGluR-LTD induction elicits rapid dendritic OPHN1 synthesis, which is dependent on mGluR1 activation and independent of fragile X mental retardation protein (FMRP). This response is essential for mGluR-LTD, as acute blockade of OPHN1 synthesis impedes LTD. mGluR-induced OPHN1 mediates LTD and associated persistent decreases in surface AMPARs via interactions with endophilin A2/3. Importantly, this role of OPHN1 is separable from its effects on basal synaptic strength, which require OPHN1's Rho-GAP activity and interaction with Homer1b/c. Thus, our data establish a role for rapid OPHN1 synthesis in mGluR-LTD. VIDEO ABSTRACT:
    Neuron 10/2011; 72(2):300-15. DOI:10.1016/j.neuron.2011.09.001 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synapses are specialized cell-cell contacts that mediate communication between neurons. Most excitatory synapses in the brain are housed on dendritic spines, small actin-rich protrusions extending from dendrites. During development and in response to environmental stimuli, spines undergo marked changes in shape and number thought to underlie processes like learning and memory. Improper spine development, in contrast, likely impedes information processing in the brain, since spine abnormalities are associated with numerous brain disorders. Elucidating the mechanisms that regulate the formation and plasticity of spines and their resident synapses is therefore crucial to our understanding of cognition and disease. Rho-family GTPases, key regulators of the actin cytoskeleton, play essential roles in orchestrating the development and remodeling of spines and synapses. Precise spatio-temporal regulation of Rho GTPase activity is critical for their function, since aberrant Rho GTPase signaling can cause spine and synapse defects as well as cognitive impairments. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). We propose that Rho-family GEFs and GAPs provide the spatiotemporal regulation and signaling specificity necessary for proper Rho GTPase function based on the following features they possess: (i) existence of multiple GEFs and GAPs per Rho GTPase, (ii) developmentally regulated expression, (iii) discrete localization, (iv) ability to bind to and organize specific signaling networks, and (v) tightly regulated activity, perhaps involving GEF/GAP interactions. Recent studies describe several Rho-family GEFs and GAPs that uniquely contribute to spinogenesis and synaptogenesis. Here, we highlight several of these proteins and discuss how they occupy distinct biochemical niches critical for synaptic development.
    Progress in Neurobiology 07/2011; 94(2):133-48. DOI:10.1016/j.pneurobio.2011.04.011 · 10.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during experience-dependent plasticity. This mini-symposium review will feature ongoing research into how spines are regulated by actin-signaling pathways during development and plasticity. It will also highlight evolving studies into how disruptions to these pathways might be functionally coupled to congenital disorders such as mental retardation.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 11/2010; 30(45):14937-42. DOI:10.1523/JNEUROSCI.4276-10.2010 · 6.75 Impact Factor