Modeling of the mechanical function of the human gastroesophageal junction using an anatomically realistic three-dimensional model.

Auckland Bioengineering Institute, The University of Auckland, New Zealand.
Journal of biomechanics (Impact Factor: 2.66). 06/2009; 42(11):1604-9. DOI: 10.1016/j.jbiomech.2009.04.041
Source: PubMed

ABSTRACT The aim of this study was to combine the anatomy and physiology of the human gastroesophageal junction (the junction between the esophagus and the stomach) into a unified computer model. A three-dimensional (3D) computer model of the gastroesophageal junction was created using cross-sectional images from a human cadaver. The governing equations of finite deformation elasticity were incorporated into the 3D model. The model was used to predict the intraluminal pressure values (pressure inside the junction) due to the muscle contraction of the gastroesophageal junction and the effects of the surrounding structures. The intraluminal pressure results obtained from the 3D model were consistent with experimental values available in the literature. The model was also used to examine the independent roles of each muscle layer (circular and longitudinal) of the gastroesophageal junction by contracting them separately. Results showed that the intraluminal pressure values predicted by the model were primarily due to the contraction of the circular muscle layer. If the circular muscle layer was quiescent, the contraction of the longitudinal muscle layer resulted in an expansion of the junction. In conclusion, the model provided reliable predictions of the intraluminal pressure values during the contraction of a normal gastroesophageal junction. The model also provided a framework to examine the role of each muscle layer during the contraction of the gastroesophageal junction.

  • [Show abstract] [Hide abstract]
    ABSTRACT: High-resolution manometry (HRM) and recently described analysis algorithms, summarized in the Chicago Classification, have increased recognition of achalasia. It has become apparent that the cardinal feature of achalasia, impaired lower esophageal sphincter relaxation, can occur in several disease phenotypes: without peristalsis, with premature (spastic) distal esophageal contractions, with panesophageal pressurization, or with peristalsis. Any of these phenotypes could indicate achalasia; however, without a disease-specific biomarker, no manometric pattern is absolutely specific. Laboratory studies indicate that achalasia is an autoimmune disease in which esophageal myenteric neurons are attacked in a cell-mediated and antibody-mediated immune response against an uncertain antigen. This autoimmune response could be related to infection of genetically predisposed individuals with herpes simplex virus-1, although there is substantial heterogeneity among patients. At one end of the spectrum is complete aganglionosis, in patients with end-stage or fulminant disease. At the opposite extreme is type III (spastic) achalasia, which has no demonstrated neuronal loss-only impaired inhibitory post-ganglionic neuron function; it is often associated with accentuated contractility and could be mediated by cytokine-induced alterations in gene expression. Distinct from these extremes is progressive plexopathy, which likely arises from achalasia with preserved peristalsis and then develops into type II achalasia and on to type I achalasia. Variations in its extent and rate of progression are likely related to the intensity of the cytotoxic T-cell assault on the myenteric plexus. Moving forward, we need to integrate the knowledge we have gained into treatment paradigms that are specific for individual phenotypes of achalasia, and away from the one-size-fits-all approach.
    Gastroenterology 08/2013; · 12.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to obtain detailed information regarding the three-dimensional structure of the gastro-oesophageal region, and, in particular, the fiber orientation of the different muscle layers of the junction. This was achieved by a study of an en bloc resection of the gastro-oesophageal junction (GOJ) harvested from a human cadaver. The excised tissue block was suspended in a cage to preserve anatomical relationships, fixed in formalin and embedded in wax. The tissue block was then processed by a custom-built extended-volume imaging system to obtain the microstructural information using a digital camera which acquires images at a resolution of 8.2 microm/pixel. The top surface of the tissue block was sequentially stained and imaged. At each step, the imaged surface was milled off at a depth of 50 microm. The processing of the tissue block resulted in 650 images covering a length of 32.25 mm of the GOJ. Structures, including the different muscle and fascial layers, were then traced out from the cross-sectional images using color thresholding. The traced regions were then aligned and assembled to provide a three-dimensional representation of the GOJ. The result is the detailed three-dimensional microstructural anatomy of the GOJ represented in a new way. The next stage will be to integrate key physiological events, including peristalsis and relaxation, into this model using mathematical modeling to allow accurate visual tools for training health professionals and patients.
    Clinical Anatomy 02/2010; 23(3):287-96. · 1.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to apply novel high-resolution manometry with eight-sector radial pressure resolution (3D-HRM technology) to resolve the deglutitive pressure morphology at the esophagogastric junction (EGJ) before, during, and after bolus transit. A hybrid HRM assembly, including a 9-cm-long 3D-HRM array, was used to record EGJ pressure morphology in 15 normal subjects. Concurrent videofluoroscopy was used to relate bolus movement to pressure morphology and EGJ anatomy, aided by an endoclip marking the squamocolumnar junction (SCJ). The contractile deceleration point (CDP) marked the time at which luminal clearance slowed to 1.1 cm/s and the location (4 cm proximal to the elevated SCJ) at which peristalsis terminated. The phrenic ampulla spanned from the CDP to the SCJ. The subsequent radial and axial collapse of the ampulla coincided with the reconstitution of the effaced and elongated lower esophageal sphincter (LES). Following ampullary emptying, the stretched LES (maximum length 4.0 cm) progressively collapsed to its baseline length of 1.9 cm (P < 0.001). The phrenic ampulla is a transient structure comprised of the stretched, effaced, and axially displaced LES that serves as a "yield zone" to facilitate bolus transfer to the stomach. During ampullary emptying, the LES circular muscle contracts, and longitudinal muscle shortens while that of the adjacent esophagus reelongates. The likely LES elongation with the formation of the ampulla and shortening to its native length after ampullary emptying suggest that reduction in the resting tone of the longitudinal muscle within the LES segment is a previously unrecognized component of LES relaxation.
    AJP Gastrointestinal and Liver Physiology 11/2011; 302(3):G389-96. · 3.65 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014

Similar Publications