Article

Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset.

Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
NeuroImage (Impact Factor: 6.13). 06/2009; 48(1):138-49. DOI: 10.1016/j.neuroimage.2009.05.056
Source: PubMed

ABSTRACT Structural and functional brain images are playing an important role in helping us understand the changes associated with neurological disorders such as Alzheimer's disease (AD). Recent efforts have now started investigating their utility for diagnosis purposes. This line of research has shown promising results where methods from machine learning (such as Support Vector Machines) have been used to identify AD-related patterns from images, for use in diagnosing new individual subjects. In this paper, we propose a new framework for AD classification which makes use of the Linear Program (LP) boosting with novel additional regularization based on spatial "smoothness" in 3D image coordinate spaces. The algorithm formalizes the expectation that since the examples for training the classifier are images, the voxels eventually selected for specifying the decision boundary must constitute spatially contiguous chunks, i.e., "regions" must be preferred over isolated voxels. This prior belief turns out to be useful for significantly reducing the space of possible classifiers and leads to substantial benefits in generalization. In our method, the requirement of spatial contiguity (of selected discriminating voxels) is incorporated within the optimization framework directly. Other methods have made use of similar biases as a pre- or post-processing step, however, our model incorporates this emphasis on spatial smoothness directly into the learning step. We report on extensive evaluations of our algorithm on MR and FDG-PET images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and discuss the relationship of the classification output with the clinical and cognitive biomarker data available within ADNI.

0 Bookmarks
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In an increasing number of neuroimaging studies, brain images, which are in the form of multidimensional arrays (tensors), have been collected on multiple subjects at multiple time points. Of scientific interest is to analyze such massive and complex longitudinal images to diagnose neurodegenerative disorders and to identify disease relevant brain regions. In this article, we treat those problems in a unifying regression framework with image predictors, and propose tensor generalized estimating equations (GEE) for longitudinal imaging analysis. The GEE approach takes into account intra-subject correlation of responses, whereas a low rank tensor decomposition of the coefficient array enables effective estimation and prediction with limited sample size. We propose an efficient estimation algorithm, study the asymptotics in both fixed $p$ and diverging $p$ regimes, and also investigate tensor GEE with regularization that is particularly useful for region selection. The efficacy of the proposed tensor GEE is demonstrated on both simulated data and a real data set from the Alzheimer's Disease Neuroimaging Initiative (ADNI).
    12/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Structural brain imaging is playing a vital role in identification of changes that occur in brain associated with Alzheimer's disease. This paper proposes an automated image processing based approach for the identification of AD from MRI of the brain. The proposed approach is novel in a sense that it has higher specificity/accuracy values despite the use of smaller feature set as compared to existing approaches. Moreover, the proposed approach is capable of identifying AD patients in early stages. The dataset selected consists of 85 age and gender matched individuals from OASIS database. The features selected are volume of GM, WM, and CSF and size of hippocampus. Three different classification models (SVM, MLP, and J48) are used for identification of patients and controls. In addition, an ensemble of classifiers, based on majority voting, is adopted to overcome the error caused by an independent base classifier. Ten-fold cross validation strategy is applied for the evaluation of our scheme. Moreover, to evaluate the performance of proposed approach, individual features and combination of features are fed to individual classifiers and ensemble based classifier. Using size of left hippocampus as feature, the accuracy achieved with ensemble of classifiers is 93.75%, with 100% specificity and 87.5% sensitivity.
    Computational and Mathematical Methods in Medicine 01/2014; 2014:862307. · 1.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multi-atlas based methods have been recently used for classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Compared with traditional single-atlas based methods, multiatlas based methods adopt multiple predefined atlases and thus are less biased by a certain atlas. However, most existing multiatlas based methods simply average or concatenate the features from multiple atlases, which may ignore the potentially important diagnosis information related to the anatomical differences among different atlases. In this paper, we propose a novel view (i.e., atlas) centralized multi-atlas classification method, which can better exploit useful information in multiple feature representations from different atlases. Specifically, all brain images are registered onto multiple atlases individually, to extract feature representations in each atlas space. Then, the proposed view-centralized multi-atlas feature selection method is used to select the most discriminative features from each atlas with extra guidance from other atlases. Next, we design a support vector machine (SVM) classifier using the selected features in each atlas space. Finally, we combine multiple SVM classifiers for multiple atlases through a classifier ensemble strategy for making a final decision. We have evaluated our method on 459 subjects [including 97 AD, 117 progressive MCI (p-MCI), 117 stable MCI (s-MCI), and 128 normal controls (NC)] from the Alzheimer's Disease Neuroimaging Initiative database, and achieved an accuracy of 92.51% for AD versus NC classification and an accuracy of 78.88% for p-MCI versus s-MCI classification. These results demonstrate that the proposed method can significantly outperform the previous multi-atlas based classification methods. Hum Brain Mapp, 2015. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 01/2015; · 6.92 Impact Factor

Preview

Download
0 Downloads
Available from