Aberrant de novo methylation of the p16INK4A CpG island is initiated post gene silencing in association with chromatin remodelling and mimics nucleosome positioning.

Cancer Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia.
Human Molecular Genetics (Impact Factor: 7.69). 06/2009; 18(16):3098-109. DOI: 10.1093/hmg/ddp251
Source: PubMed

ABSTRACT Changes in the epigenetic landscape are widespread in neoplasia, with de novo methylation and histone repressive marks commonly enriched in CpG island associated promoter regions. DNA hypermethylation and histone repression correlate with gene silencing, however, the dynamics of this process are still largely unclear. The tumour suppressor gene p16(INK4A) is inactivated in association with CpG island methylation during neoplastic progression in a variety of cancers, including breast cancer. Here, we investigated the temporal progression of DNA methylation and histone remodelling in the p16(INK4A) CpG island in primary human mammary epithelial cell (HMEC) strains during selection, as a model for early breast cancer. Silencing of p16(INK4A) has been previously shown to be necessary before HMECs can escape from selection. Here, we demonstrate that gene silencing occurs prior to de novo methylation and histone remodelling. An increase in DNA methylation was associated with a rapid loss of both histone H3K27 trimethylation and H3K9 acetylation and a gradual gain of H3K9 dimethylation. Interestingly, we found that regional-specific 'seeding' methylation occurs early after post-selection and that the de novo methylation pattern observed in HMECs correlates with the apparent footprint of nucleosomes across the p16(INK4A) CpG island. Our results demonstrate for the first time that p16(INK4A) gene silencing is a precursor to epigenetic suppression and that subsequent de novo methylation initially occurs in nucleosome-free regions across the p16(INK4A) CpG island and this is associated with a dynamic change in histone modifications.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation is an important part of epigenetics. In this study, we examined the methylation state of two CpG islands in the promoter of the p16 gene in radiation-induced thymic lymphoma samples. The mRNA and protein levels of P16 were significantly reduced in radiation-induced thymic lymphoma tissue samples. Twenty-three CpG sites of the CpG islands in the p16 promoter region were detected, and the methylation percentages of -71, -63, -239, -29, -38, -40, -23, 46 CpG sites were significantly higher in radiation-induced thymic lymphoma tissue samples than those in matched non-irradiated thymus tissue samples. This study provides new evidence for the methylation state of p16 in the radiation-induced thymic lymphoma samples, which suggests that the methylation of these CpG sites in the p16 promoter may reduce its expression in the thymic lymphoma after irradiation.
    PLoS ONE 01/2014; 9(4):e93850. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: p16 Methylation frequently occurs in carcinogenesis. While it has been hypothesized that the p16 methylation states are dynamically maintained in cancer cells, direct evidence supporting this hypothesis has not been available until now. A fusion cell model was established which reprogrammed the native DNA methylation pattern of the cells. The methylation status of the p16 alleles was then repeatedly quantitatively analyzed in the fusion monoclonal, parental cancer cell lines (p16-completely methylated-AGS and unmethylated-MGC803), and HCT116 non-fusion cell using DHPLC and bisulfite sequencing. Histone methylation was analyzed using chromatin immuno-precipitation (ChIP)-PCR. P16 expression status was determined using immuno-staining and RT-PCR. The methylation status for the majority of the p16 alleles was stably maintained in the fusion monoclonal cells after up to 60 passages. Most importantly, focal de novo methylation, demethylation, and hydroxymethylation were consistently observed within about 27% of the p16 alleles in the fusion monoclones, but not the homozygously methylated or unmethylated parental cells. Furthermore, subclones of the monoclones consistently maintained the same p16 methylation pattern. A similar phenomenon was also observed using the p16 hemi-methylated HCT116 non-fusion cancer cell line. Interestingly, transcription was not observed in p16 alleles that were hydroxymethylated with an antisense-strand-specific pattern. Also, the levels of H3K9 and H3K4 trimethylation in the fusion cells were found to be slightly lower than the parental AGS and MGC803 cells, respectively. The present study provides the first direct evidence confirming that the methylation states of p16 CpG islands is not only homeostatically maintained, but also accompanied by a dynamic process of transient focal methylation, demethylation, and hydroxymethylation in cancer cells.
    PLoS ONE 01/2014; 9(5):e97785. · 3.73 Impact Factor
  • Epigenomics 12/2013; 5(6):595-598. · 2.43 Impact Factor