Tang TY, Howarth SP, Miller SR, Graves MJ, Patterson AJ, UK-I JM, et al. The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol. 2009;53(22):2039-50

University Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
Journal of the American College of Cardiology (Impact Factor: 15.34). 06/2009; 53(22):2039-50. DOI: 10.1016/j.jacc.2009.03.018
Source: PubMed

ABSTRACT The aim of this study was to evaluate the effects of low-dose (10 mg) and high-dose (80 mg) atorvastatin on carotid plaque inflammation as determined by ultrasmall superparamagnetic iron oxide (USPIO)-enhanced carotid magnetic resonance imaging (MRI). The hypothesis was that treatment with 80 mg atorvastatin would demonstrate quantifiable changes in USPIO-enhanced MRI-defined inflammation within the first 3 months of therapy.
Preliminary studies indicate that USPIO-enhanced MRI can identify macrophage infiltration in human carotid atheroma in vivo and hence may be a surrogate marker of plaque inflammation.
Forty-seven patients with carotid stenosis >40% on duplex ultrasonography and who demonstrated intraplaque accumulation of USPIO on MRI at baseline were randomly assigned in a balanced, double-blind manner to either 10 or 80 mg atorvastatin daily for 12 weeks. Baseline statin therapy was equivalent to 10 mg of atorvastatin or less. The primary end point was change from baseline in signal intensity (DeltaSI) on USPIO-enhanced MRI in carotid plaque at 6 and 12 weeks.
Twenty patients completed 12 weeks of treatment in each group. A significant reduction from baseline in USPIO-defined inflammation was observed in the 80-mg group at both 6 weeks (DeltaSI 0.13; p = 0.0003) and at 12 weeks (DeltaSI 0.20; p < 0.0001). No difference was observed with the low-dose regimen. The 80-mg atorvastatin dose significantly reduced total cholesterol by 15% (p = 0.0003) and low-density lipoprotein cholesterol by 29% (p = 0.0001) at 12 weeks.
Aggressive lipid-lowering therapy over a 3-month period is associated with significant reduction in USPIO-defined inflammation. USPIO-enhanced MRI methodology may be a useful imaging biomarker for the screening and assessment of therapeutic response to "anti-inflammatory" interventions in patients with atherosclerotic lesions. (Effects of Atorvastatin on Macrophage Activity and Plaque Inflammation Using Magnetic Resonance Imaging [ATHEROMA]; NCT00368589).

Download full-text


Available from: Martin John Graves, Mar 29, 2014
  • Source
    • "Clinical studies have demonstrated uptake of small iron oxide (USPIO) particles in carotid plaques and the uptake was found to correspond to areas of macrophage infiltration [13]. One study has even used USPIO-enhanced carotid MRI to assess the therapeutic response of short term aggressive lipid lower therapy [14]. Fibrin is another molecular target of MRI utilizing a fibrinspecific gadolinium-based contrast agent. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Noninvasive imaging of atherosclerosis could potentially move patient management towards individualized triage, treatment, and followup. The newly introduced combined positron emission tomography (PET) and magnetic resonance imaging (MRI) system could emerge as a key player in this context. Both PET and MRI have previously been used for imaging plaque morphology and function: however, the combination of the two methods may offer new synergistic opportunities. Here, we will give a short summary of current relevant clinical applications of PET and MRI in the setting of atherosclerosis. Additionally, our initial experiences with simultaneous PET/MRI for atherosclerosis imaging are presented. Finally, future potential vascular applications exploiting the unique combination of PET and MRI will be discussed.
    BioMed Research International 01/2015; 2015:914516. DOI:10.1155/2015/914516 · 2.71 Impact Factor
  • Source
    • "Nanoparticles, such as ultra-small superparamagnetic iron oxide (USPIO), are phagocytosed by macrophages and help identify plaque inflammation. Symptomatic patients had greater areas of signal drop from phagocytosed USPIO [80], and aggressive lipid-lowering therapy over 3 months significantly decreased USPIO-identified inflammation [81]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ischemic syndromes associated with carotid atherosclerotic disease are often related to plaque rupture. The benefit of endarterectomy for high-grade carotid stenosis in symptomatic patients has been established. However, in asymptomatic patients, the benefit of endarterectomy remains equivocal. Current research seeks to risk stratify asymptomatic patients by characterizing vulnerable, rupture-prone atherosclerotic plaques. Plaque composition, biology, and biomechanics are studied by noninvasive imaging techniques such as magnetic resonance imaging, computed tomography, ultrasound, and ultrasound elastography. These techniques are at a developmental stage and have yet to be used in clinical practice. This review will describe noninvasive techniques in ultrasound, magnetic resonance imaging, and computed tomography imaging modalities used to characterize atherosclerotic plaque, and will discuss their potential clinical applications, benefits, and drawbacks.
    Canadian Association of Radiologists Journal 12/2013; 65(3). DOI:10.1016/j.carj.2013.05.003 · 0.58 Impact Factor
  • Source
    • "The first major advance in this field utilized USPIO (ultrasmall superparamagnetic iron oxides, e.g. ferumoxtran or ferumoxytol) to enable high-resolution MRI of carotid plaque macrophage accumulation, and to report on macrophage modulation following statin therapy [12] [13] [14]. To date, these studies have focused upon the imaging of larger, relatively immobile arteries such as the carotid arteries or aorta. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Novel imaging modalities are required to better identify vulnerable atherosclerotic plaques before their dire consequences of myocardial infarction, sudden death, and stroke. Moving beyond traditional diagnostic methods, the field of molecular imaging offers an innovative approach to report upon critical in vivo biological features of high-risk plaques. Molecular imaging employs engineered, targeted imaging agents in conjunction with sophisticated, high-resolution detection systems. While various modalities have been investigated for this purpose, intravascular near infrared fluorescence imaging (NIRF) strategies are uniquely poised to provide high-resolution readouts of human coronary artery plaques. To date, preclinical animal studies have demonstrated feasibility of both standalone NIRF intravascular imaging as well as dual-modality approaches detecting inflammation and fibrin deposition in coronary-sized arteries. This translatable catheter-based approach is positioned to advance the identification of biologically vulnerable coronary plaques and coronary stents at risk of thrombosis.
    American Journal of Nuclear Medicine and Molecular Imaging 01/2013; 3(3):217-31. · 3.25 Impact Factor
Show more