Article

Concentrations and emissions of polybrominated diphenyl ethers from U.S. houses and garages.

Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109-2029, USA.
Environmental Science and Technology (Impact Factor: 5.48). 05/2009; 43(8):2693-700. DOI: 10.1021/es8029957
Source: PubMed

ABSTRACT Concentrations of polybrominated diphenyl ethers (PBDEs) and other brominated flame retardants (BFRs) have been rapidly increasing in fish, birds, sediments, indoor environments, and humans, but emission sources and exposure pathways of these pollutants remain poorly understood. The many BFR-containing materials in buildings constitute a large reservoir of these compounds, and in-use releases from this reservoir may be a significant environmental source. To estimate in-use releases from building materials and contents in residences, we monitored 12 houses and garages in two seasons and combined measurements of BFRs in air and settled dust, air exchange rates, and other information in an approach that utilized the building as a "natural" test chamber. Results were scaled to provide a first estimate of aggregate emission rates from U.S. houses. PBDE releases total about 4 microg h(-1) per house or 20 ng m(-2) h(-1), and U.S. houses and garages collectively release about 4100 kg y(-1). Most of these releases are settled floor dust, but about 20% are released directly to the ambient environment via airborne vapor and particulate matter. These screening-level estimates are subject to considerable uncertainty, but they have an advantage in that they reflect real-world conditions based on mass balance calculations.

0 Bookmarks
 · 
65 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biomass burning in Asia has been widely studied owing to its adverse effects on visibility, human health, and global climate. However the impact of rice straw burning on polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) and polybrominated diphenyl ethers (PBDEs) concentrations is not known. In this study concentrations of these pollutants were measured at a farm site and two nearby sites during rice straw (open) burning and non-burning periods. During non-burning periods atmospheric PCDD/F and PBDE concentrations ranged from 0.0263 to 0.0329 pg I-TEQ/Nm3 and 43.5 to 58.3 pg/Nm3 respectively, and were similar at all of the sites. During rice straw burning periods PCDD/F and PBDE concentrations measured near the combustion (farm) site increased dramatically by six to twenty times. The strong correlation between the natural logarithm of PBDE and PCDD/F concentrations (r = 0.949, p < 0.01) at each site indicates that the elevated PCDD/Fs and PBDEs were due to emissions from the rice straw burning. The calculated emission factors, determined using the burned carbon method and the Industrial Source Complex Short-Term Dispersion Model (ISCST3), ranged from 12.6 to 14.5 ng TEQ/kg Cburned and 11.7 to 14.5 μg/kg Cburned, for PCDD/Fs and PBDEs respectively. The PBDE emission factors were at least 38 times higher than those of PCDD/Fs, revealing that rice straw burning is an important PBDE emission source.
    Atmospheric Environment 09/2014; 94:573-581. · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dried blood spots (DBSs) can provide accurate and valuable estimates of exposure to environmental toxicants, and the use of information derived from archived newborn DBSs has enormous potential to open up new research on the impacts of early chemical exposure on disease. Broad application of DBS for the purpose of quantitative exposure estimation requires robust and validated methods. This study investigates the suitability of DBS analyses for population studies of exposure to three chemical groups: polychlorinated biphenyls (PCBs), brominated flame retardants (BFRs), and chlorinated pesticides. It examines background (matrix) contamination, recovery and extraction variability, sensitivity, and storage stability. DBS samples prepared using 50μL of adult blood were analyzed by GC/MS, and method performance was confirmed by using certified materials and paired DBS-blood samples from six volunteers. Several of the target compounds and their degradation products have not been previously measured in DBSs. All target compounds were detected in DBS samples collected from the volunteers. Sample DBS cards showed background contamination of several compounds. When stored at room temperature, target compounds, excluding PBDEs, were stable for up to one month. When refrigerated or frozen, stability was acceptable for all compounds up to one year, and multiyear storage appears acceptable at colder (e.g., -80°C) temperatures. Multicompartment models may be used to estimate or correct for storage losses. Considering concentrations of contaminants for adults and children reported in the literature, and experimental values of detection limits and background contamination, DBS samples are suitable for quantifying exposures to many PCBs, BFRs and persistent pesticides.
    Science of The Total Environment 07/2014; 494-495C:252-260. · 3.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brominated flame retardants (BFRs) have been detected in indoor dust in many studies, at concentrations spanning several orders of magnitude. Limited information is available on the pathways via which BFRs migrate from treated products into dust, yet the different mechanisms hypothesized to date may provide an explanation for the range of reported concentrations. In particular, transfer of BFRs to dust via abrasion of particles or fibers from treated products may explain elevated concentrations (up to 210mgg(-1)) of low volatility BFRs like decabromodiphenyl ether (BDE-209). In this study, an indoor dust sample containing a low concentration of hexabromocyclododecane, or HBCD, (110ngg(-1) ΣHBCDs) was placed on the floor of an in-house test chamber. A fabric curtain treated with HBCDs was placed on a mesh shelf 3cm above the chamber floor and abrasion induced using a stirrer bar. This induced abrasion generated fibers of the curtain, which contaminated the dust, and ΣHBCD concentrations in the dust increased to between 4020 and 52 500ngg(-1) for four different abrasion experiment times. The highly contaminated dust (ΣHBCD at 52 500ngg(-1)) together with three archived dust samples from various UK microenvironments, were investigated with forensic microscopy techniques. These techniques included Micro X-ray fluorescent spectroscopy, scanning emission microscopy coupled with an energy dispersive X-ray spectrometer, Fourier transform infrared spectroscopy with further BFR analysis on LC-MS/MS. Using these techniques, fibers or particles abraded from a product treated with BFRs were identified in all dust samples, thereby accounting for the elevated concentrations detected in the original dust (3500 to 88 800ngg(-1) ΣHBCD and 24 000 to 1 438 000ngg(-1) for BDE-209). This study shows how test chamber experiments alongside forensic microscopy techniques, can provide valuable insights into the pathways via which BFRs contaminate indoor dust.
    Science of The Total Environment 06/2014; 493C:639-648. · 3.16 Impact Factor