Mercury trophic transfer in a eutrophic lake: the importance of habitat-specific foraging.

Department of Wildlife, Fish and Conservation Biology, University of California, Davis, California 95616, USA.
Ecological Applications (Impact Factor: 4.13). 01/2009; 18(8 Suppl):A196-212. DOI: 10.1890/06-1476.1
Source: PubMed

ABSTRACT Mercury (Hg) trophic transfer and bioaccumulation in fish from a mine-impacted, eutrophic lake were examined in relation to foraging habitat, trophic position, and size. Diet analysis indicated that there were clear ontogenetic shifts in foraging habitats and trophic position. Pelagic diet decreased and benthic diet increased with increasing fish length in bluegill, black crappie, inland silverside, and largemouth bass, whereas there was no shift for prickly sculpin or threadfin shad. Stable carbon isotope values (delta13C) were inversely related to the proportion of pelagic prey items in the diet, but there was no clear relationship with benthic foraging. There were distinct differences between pelagic and benthic prey basal delta13C values, with a range of approximately -28 per thousand in pelagic zooplankton to approximately -20 per thousand in benthic caddisflies. Profundal prey such as chironomid larvae had intermediate delta13C values of approximately -24 per thousand, reflecting the influence of pelagic detrital subsidies and suppressing the propagation of the benthic carbon isotope signal up the food chain. Fish total mercury (TotHg) concentrations varied with habitat-specific foraging, trophic position, and size; however, the relationships differed among species and ages. When controlling for the effects of species, length, and trophic position, TotHg and delta13C were positively correlated, indicating that Hg trophic transfer is linked to benthic foraging. When examined on a species-specific basis, TotHg was positively correlated with delta13C only for bluegill, largemouth bass, and threadfin shad. However, diet-based multiple regression analyses suggested that TotHg also increased with benthic foraging for inland silverside and black crappie. In both species, benthic prey items were dominated by chironomid larvae, explaining the discrepancy with delta13C. These results illustrate the importance of foraging habitat to Hg bioaccumulation and indicate that pelagic carbon can strongly subsidize the basal energy sources of benthic organisms.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Concentration of methylmercury (MeHg) in different habitats and associated food chains may vary because of habitat characteristics that determine methylation and MeHg transfer. We examined MeHg levels in primary consumers from littoral, pelagial and profundal habitats of a boreal humic lake, and measured total mercury (TotHg) and MeHg in surface sediments at increasing depths. MeHg concentrations in primary consumers increased from profundal to littoral, a pattern which was mirrored by the surface sediment concentrations. Methylation potential (expressed as the ratio of MeHg to TotHg) was lower in profundal than in littoral sediments, suggesting that littoral sediments have higher net methylation rates. No specific MeHg-enriched entrance point in the littoral food chain was identified, however. High MeHg concentrations in littoral primary consumers and sediments suggest that shallow lake sediments are important for MeHg transfer to the aquatic food web in boreal humic lakes. Lake morphometry, most specifically the fraction of littoral, is hence likely to add to differences in MeHg bioaccumulation rates in lake food webs.
    Water Air and Soil Pollution 10/2014; 225(10). · 1.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurotoxic methylmercury (MeHg) formed from inorganic divalent mercury (Hg(II)) accumulates in aquatic biota and remains at high levels worldwide. It is poorly understood to what extent different geochemical Hg pools contribute to these levels. Here we report quantitative data on MeHg formation and bioaccumulation, in mesocosm water-sediment model ecosystems, using five Hg(II) and MeHg isotope tracers simulating recent Hg inputs to the water phase and Hg stored in sediment as bound to natural organic matter or as metacinnabar. Calculations for an estuarine ecosystem suggest that the chemical speciation of Hg(II) solid/adsorbed phases control the sediment Hg pool's contribution to MeHg, but that input of MeHg from terrestrial and atmospheric sources bioaccumulates to a substantially greater extent than MeHg formed in situ in sediment. Our findings emphasize the importance of MeHg loadings from catchment runoff to MeHg content in estuarine biota and we suggest that this contribution has been underestimated.
    Nature Communications 08/2014; 5:4624. · 10.74 Impact Factor
  • Marine Ecology Progress Series 05/2014; 504:253-263. · 2.64 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014