Hypomethylation of the MMP7 promoter and increased expression of MMP7 distinguishes the basal-like breast cancer subtype from other triple-negative tumors

Breast Cancer Research and Treatment (Impact Factor: 4.2). 07/2014; 146(1). DOI: 10.1007/s10549-014-2989-4

ABSTRACT Identification of novel targets for the treatment of basal-like breast cancer is essential for improved outcomes in patients with this disease. This study investigates the association of MMP7 expression and MMP7 promoter methylation with subtype and outcome in breast cancer patient cohorts. Immunohistochemical analysis was performed on a breast cancer tissue microarray (TMA) and validated in independent histological samples. MMP7 expression significantly correlated with patient age, tumor size, triple negative (TN) status, and recurrence. Analysis of publicly available datasets confirmed MMP7 gene expression as a prognostic marker of breast cancer metastasis, particularly metastasis to the brain and lungs. Methylation of the MMP7 promoter was assessed by methylation-specific PCR in a panel of breast cancer cell lines and patient tumor samples. Hypomethylation of the MMP7 promoter significantly correlated with TN status in DNA from patient tumor samples and this association was confirmed using The Cancer Genome Atlas (TCGA) dataset. Evaluation of a panel of breast cancer cell lines and data from the Curtis and TCGA breast carcinoma datasets revealed that elevated MMP7 expression and MMP7 promoter hypomethylation are specific biomarkers of the basal-like molecular subtype which shares considerable, but not complete, overlap with the clinical TN subtype. Importantly, MMP7 expression was identified as an independent predictor of pathological complete response in a large breast cancer patient cohort. Combined, these data suggest that MMP7 expression and MMP7 promoter methylation may be useful as prognostic biomarkers. Furthermore, MMP7 expression and promoter methylation analysis may be effective mechanisms to distinguish basal-like breast cancers from other triple-negative subtypes. Finally, these data implicate MMP7 as a potential therapeutic target for the treatment of basal-like breast cancers.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Metastatic disease is responsible for the majority of cancer-related deaths, either directly due to tumor involvement of critical organs or indirectly due to complications of therapy to control tumor growth and spread. An understanding of the mechanisms of tumor cell invasion and metastasis may be important for devising therapies aimed at preventing tumor cell spread. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endoproteinases whose enzymatic activity is directed against components of the extracellular matrix (ECM). In humans, 16 members of this family have been identified by cloning and sequencing. These proteinases are linked by a core of common domain structures and by their relationship to a family of proteinase inhibitors called the tissue inhibitors of metalloproteinases (TIMPs). Four members of the TIMP family have been cloned and sequenced in humans and they inhibit MMPs by forming tight-binding, noncovalent associations with the active site of the MMPs. MMPs facilitate tumor cell invasion and metastasis by at least three distinct mechanisms. First, proteinase action removes physical barriers to invasion through degradation of ECM macromolecules such as collagens, laminins, and proteoglycans. This has been demonstrated in vitro through the use of chemoinvasion assays and in vivo by the presence of active MMPs at the invasive front of tumors. Second, MMPs have the ability to modulate cell adhesion. For cells to move through the ECM, they must be able to form new cell-matrix and cell-cell attachments and break existing ones. Using a cell transfection system that altered the ratio of MMP-2 to TIMP-2 we have demonstrated significant variation in the adhesive phenotype of tumor cells. Finally, MMPs may act on ECM components or other proteins to uncover hidden biologic activities. For example, the angiogenesis inhibitor angiostatin may be produced from plasminogen by MMP action and laminin-5 is specifically degraded by MMP-2 to produce a soluble chemotactic fragment. Thus MMPs play multiple key roles in facilitating the metastasis of tumor cells. Therapies designed to interfere with specific MMP actions may be useful in the control of metastatic disease.
    Cancer Chemotherapy and Pharmacology 02/1999; 43 Suppl:S42-51. DOI:10.1007/s002800051097 · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Matrix metalloproteinase (MMP) family members have been associated with advanced-stage cancer and contribute to tumor progression, invasion, and metastasis as determined by inhibitor studies. In situ hybridization was performed to analyze the expression and localization of all known MMPs in a series of human breast cancer biopsy specimens. Most MMPs were localized to tumor stroma, and all MMPs had very distinct expression patterns. Matrilysin was expressed by morphologically normal epithelial ducts within tumors and in tissue from reduction mammoplasties, and by epithelial-derived tumor cells. Many family members, including stromelysin-3, gelatinase A, MT-MMP, interstitial collagenase, and stromelysin-1 were localized to fibroblasts of tumor stroma of invasive cancers but in quite distinct, and generally widespread, patterns. Gelatinase B, collagenase-3, and metalloelastase expression were more focal; gelatinase B was primarily localized to endothelial cells, collagenase-3 to isolated tumor cells, and metalloelastase to cytokeratin-negative, macrophage-like cells. The MMP inhibitor, TIMP-1, was expressed in both stromal and tumor components in most tumors, and neither stromelysin-2 nor neutrophil collagenase were detected in any of the tumors. These results indicate that there is very tight and complex regulation in the expression of MMP family members in breast cancer that generally represents a host response to the tumor and emphasize the need to further evaluate differential functions for MMP family members in breast tumor progression.
    American Journal Of Pathology 08/1996; 149(1):273-82. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Matrilysin is a matrix metalloproteinase expressed in the tumor cells of greater than 80% of intestinal adenomas. The majority of these intestinal tumors are associated with the accumulation of beta-catenin, a component of the cadherin adhesion complex and, through its association with the T Cell Factor (Tcf) DNA binding proteins, a regulator in the Wnt signal transduction pathway. In murine intestinal tumors, matrilysin transcripts show striking overlap with the accumulation of beta-catenin protein. The matrilysin promoter is upregulated as much as 12-fold by beta-catenin in colon tumor cell lines in a manner inversely proportional to the endogenous levels of beta-catenin/Tcf complex and is dependent upon a single optimal Tcf-4 recognition site. Coexpression of the E-cadherin cytoplasmic domain blocked this induction and reduced basal promoter activity in every colon cancer cell line tested. Inactivation of the Tcf binding site increased promoter activity and overexpression of the Tcf factor, LEF-1, significantly downregulated matrilysin promoter activity, suggesting that beta-catenin transactivates the matrilysin promoter by virtue of its ability to abrogate Tcf-mediated repression. Because genetic ablation of matrilysin decreases tumor formation in multiple intestinal neoplasia (Min) mice, we propose that regulation of matrilysin production by beta-catenin accumulation is a contributing factor to intestinal tumorigenesis.
    Oncogene 06/1999; 18(18):2883-91. DOI:10.1038/sj.onc.1202627 · 8.56 Impact Factor


Available from
Jul 14, 2014