Dissociable effects of prefrontal and anterior temporal cortical lesions on stereotypical gender attitudes.

Cognitive Neuroscience Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1440, USA.
Neuropsychologia (Impact Factor: 3.45). 09/2009; 47(10):2125-32. DOI: 10.1016/j.neuropsychologia.2009.04.002
Source: PubMed

ABSTRACT Clinical observations of patients with ventral frontal and anterior temporal cortical lesions reveal marked abnormalities in social attitudes. A previous study in seven patients with ventral prefrontal lesions provided the first direct experimental evidence for abnormalities in social attitudes using a well-established measure of gender stereotypes, the Implicit Association Test (IAT). Here, we were able to test whether these first findings could be reproduced in a larger sample of 154 patients with penetrating head injuries, and to determine the differential effects of ventromedial prefrontal (vmPFC) and ventrolateral prefrontal (vlPFC) cortical lesions on IAT performance. In addition, we investigated the role of the superior anterior temporal lobe (aTL), recently shown to represent conceptual social knowledge. First, we used a linear regression model to identify the role of each of the three regions, while controlling for the extent of damage to other regions. We found that larger lesions in either the vmPFC or the superior aTL were associated with increased stereotypical attitudes, whereas larger lesions in the vlPFC were associated with decreased stereotypical attitudes. Second, in a confirmatory analysis, we grouped patients by lesion location and compared their performance on the IAT with that of healthy volunteers. Compared to controls, patients with lesions in either the vmPFC or the superior aTL showed increased stereotypical attitudes, whereas patients with lesions in the vlPFC showed decreased stereotypical attitudes. The functional contributions of these regions in social attitudes are discussed.


Available from: Vanessa Raymont, Jun 15, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of those who have sustained traumatic brain injuries (TBI) during military conflicts has greatly facilitated research in the fields of neuropsychology, neurosurgery, psychiatry, neurology, and neuroimaging. The Vietnam Head Injury Study (VHIS) is a prospective, long-term follow-up study of a cohort of 1,221 Vietnam veterans with mostly penetrating brain injuries, which has stretched over more than 40 years. The scope of this study, both in terms of the types of injury and fields of examination, has been extremely broad. It has been instrumental in extending the field of TBI research and in exposing pressing medical and social issues that affect those who suffer such injuries. This review summarizes the history of conflict-related TBI research and the VHIS to date, as well as the vast range of important findings the VHIS has established.
    Frontiers in Neurology 03/2011; 2:15. DOI:10.3389/fneur.2011.00015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite global increases in diversity, social prejudices continue to fuel intergroup conflict, disparities and discrimination. Moreover, as norms have become more egalitarian, prejudices seem to have 'gone underground', operating covertly and often unconsciously, such that they are difficult to detect and control. Neuroscientists have recently begun to probe the neural basis of prejudice and stereotyping in an effort to identify the processes through which these biases form, influence behaviour and are regulated. This research aims to elucidate basic mechanisms of the social brain while advancing our understanding of intergroup bias in social behaviour.
    Nature reviews Neuroscience 09/2014; 15(10). DOI:10.1038/nrn3800 · 31.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Event simulation (ES) is the situational inference process in which perceived event features such as objects, agents, and actions are associated in the brain to represent the whole situation. ES provides a common basis for various cognitive processes, such as perceptual prediction, situational understanding/prediction, and social cognition (such as mentalizing/trait inference). Here, functional magnetic resonance imaging was used to elucidate the neural substrates underlying important subdivisions within ES. First, the study investigated whether ES depends on different neural substrates when it is conducted explicitly and implicitly. Second, the existence of neural substrates specific to the future-prediction component of ES was assessed. Subjects were shown contextually related object pictures implying a situation and performed several picture-word-matching tasks. By varying task goals, subjects were made to infer the implied situation implicitly/explicitly or predict the future consequence of that situation. The results indicate that, whereas implicit ES activated the lateral prefrontal cortex and medial/lateral parietal cortex, explicit ES activated the medial prefrontal cortex, posterior cingulate cortex, and medial/lateral temporal cortex. Additionally, the left temporoparietal junction plays an important role in the future-prediction component of ES. These findings enrich our understanding of the neural substrates of the implicit/explicit/predictive aspects of ES-related cognitive processes.
    PLoS ONE 05/2014; 9(5):e96534. DOI:10.1371/journal.pone.0096534 · 3.53 Impact Factor