The response of neurons in the bed nucleus of the stria terminalis to serotonin: Implications for anxiety

Department of Psychology, University of Vermont, 2 Colchester Avenue, John Dewey Hall, Burlington, VT 05405, USA.
Progress in Neuro-Psychopharmacology and Biological Psychiatry (Impact Factor: 4.03). 06/2009; 33(8):1309-20. DOI: 10.1016/j.pnpbp.2009.05.013
Source: PubMed

ABSTRACT Substantial evidence has suggested that the activity of the bed nucleus of the stria terminalis (BNST) mediates many forms of anxiety-like behavior in human and non-human animals. These data have led many investigators to suggest that abnormal processing within this nucleus may underlie anxiety disorders in humans, and effective anxiety treatments may restore normal BNST functioning. Currently some of the most effective treatments for anxiety disorders are drugs that modulate serotonin (5-HT) systems, and several decades of research have suggested that the activation of 5-HT can modulate anxiety-like behavior. Despite these facts, relatively few studies have examined how activity within the BNST is modulated by 5-HT. Here we review our own investigations using in vitro whole-cell patch-clamp electrophysiological methods on brain sections containing the BNST to determine the response of BNST neurons to exogenous 5-HT application. Our data suggest that the response of BNST neurons to 5-HT is complex, displaying both inhibitory and excitatory components, which are mediated by 5-HT(1A), 5-HT(2A), 5-HT(2C) and 5-HT(7) receptors. Moreover, we have shown that the selective activation of the inhibitory response to 5-HT reduces anxiety-like behavior, and we describe data suggesting that the activation of the excitatory response to 5-HT may be anxiogenic. We propose that in the normal state, the function of 5-HT is to dampen activity within the BNST (and consequent anxiety-like behavior) during exposure to threatening stimuli; however, we suggest that changes in the balance of the function of BNST 5-HT receptor subtypes could alter the response of BNST neurons to favor excitation and produce a pathological state of increased anxiety.

  • [Show abstract] [Hide abstract]
    ABSTRACT: 150 healthy subjects completed a cue and context fear conditioning paradigm.•Individual differences in contextual anxiety and cued fear were assessed.•Cue-unaware subjects displayed heightened contextual anxiety.•Trait anxiety was associated with contextual anxiety, but only in cue-unaware subjects.•Genetic variation in 5-HTR1A (rs6295; C(-1019)G) was associated with contextual anxiety.
    International Journal of Psychophysiology 11/2014; DOI:10.1016/j.ijpsycho.2014.10.016 · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Deakin/Graeff hypothesis proposes that different subpopulations of serotonergic neurons through topographically organized projections to forebrain and brainstem structures modulate the response to acute and chronic stressors, and that dysfunction of these neurons increases vulnerability to affective and anxiety disorders, including Panic Disorder. We outline evidence supporting the existence of a serotonergic system originally discussed by Deakin/Graeff that is implicated in the inhibition of panic-like behavioral and physiological responses. Evidence supporting this panic inhibition system comes from the following observations: 1) serotonergic neurons located in the ‘ventrolateral dorsal raphe nucleus (DRVL) as well as the ventrolateral periaqueductal gray (VLPAG) inhibit dorsal periaqueductal gray-elicited panic-like responses; 2) chronic, but not acute, antidepressant treatment potentiates serotonin's panicolytic effect; 3) contextual fear activates a central nucleus of the amygdala-DRVL/VLPAG circuit implicated in mediating freezing and inhibiting panic-like escape behaviors; 4) DRVL/VLPAG serotonergic neurons are central chemoreceptors and modulate the behavioral and cardiorespiratory response to panicogenic agents such as sodium lactate and CO2. Implications of the panic inhibition system are discussed.
    Neuroscience & Biobehavioral Reviews 10/2014; DOI:10.1016/j.neubiorev.2014.03.010 · 10.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that voluntary exercise accentuates these sex-specific differences. We also show that levels of the anxiogenic peptide corticotrophin releasing factor (CRF) are significantly greater in males, but that AAS selectively increase CRF levels in females, thus abrogating this sex-specific difference. Exercise did not ameliorate AAS-induced anxiety or alter CRF levels in females. Exercise was anxiolytic in males, but this behavioral outcome did not correlate with CRF levels. Brain-derived neurotrophic factor (BDNF) has also been implicated in the expression of anxiety. As with CRF, levels of hippocampal BDNF mRNA were significantly greater in males than females. AAS and exercise were without effect on BDNF mRNA in females. In males, anxiolytic effects of exercise correlated with increased BDNF mRNA, however AAS-induced changes in BDNF mRNA and anxiety did not. In sum, we find that AAS elicit sex-specific differences in anxiety and that voluntary exercise accentuates these differences. In addition, our data suggest that these behavioral outcomes may reflect convergent actions of AAS and exercise on a sexually differentiated CRF signaling system within the extended amygdala.
    Hormones and Behavior 04/2014; DOI:10.1016/j.yhbeh.2014.04.008 · 4.51 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014